1
|
Picáns-Leis R, Vázquez-Mosquera ME, Pereira-Hernández M, Vizoso-González M, López-Valverde L, Barbosa-Gouveia S, López-Suárez O, López-Sanguos C, Bravo SB, García-González MA, Couce ML. Characterization of the functional component in human milk and identification of the molecular mechanisms undergoing prematurity. Clin Nutr 2025; 44:178-192. [PMID: 39700709 DOI: 10.1016/j.clnu.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIMS Human milk (HM) is the earliest form of extrauterine communication between mother and infant, that could promote early programming. The aim of this study is to look for specific biological processes, particularly those undergoing prematurity, modulated by proteins and miRNAs of HM that could be implicated in growth and development. METHODS This is a prospective, observational, single center study in which we collected 48 human milk (HM) samples at two distinct stages of lactation: colostrum (first 72-96 h) and mature milk (at week 4 post-delivery) from mothers of very preterm newborns (<32 weeks) and term (≥37 and < 42 weeks). Qualitative and quantitative proteomic and transcriptomic analysis was done in our samples. RESULTS We performed isolation and characterization of HM extracellular vesicles (EVs) to carry out proteomic and transcriptomic analysis in colostrum (CM) and mature milk (MM). Proteomic analysis revealed a functional role of CM in immunological protection and MM in metabolic processes. TENA, TSP1 and OLF4, proteins with roles in immune response and inflammatory modulation, were upregulated in CM vs MM, particularly in preterm. HM modulation differed depending on gestational age (GA). The miRNAs identified in HM are implicated in structural functions, including growth and neurological development. miRNA-451a was differentially expressed between groups, and downregulated in preterm CM. CONCLUSIONS Because the particularities of each GA are reflected in the EVs content of HM, providing newborns with HM from their own mother is the optimal way for satisfying their specific needs. Although the role of the proteomic profile of CM and MM of different GA in relation to neurodevelopment has been previously described, this is the first study to show a complete functional characterization of HM (proteome, miRNA at the same time), unmasking the molecular mechanisms related to EVs signaling and their functional role in preterm.
Collapse
Affiliation(s)
- Rosaura Picáns-Leis
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María E Vázquez-Mosquera
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María Pereira-Hernández
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - Marta Vizoso-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Laura López-Valverde
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Sofía Barbosa-Gouveia
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Olalla López-Suárez
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Carolina López-Sanguos
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Miguel A García-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - María L Couce
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| |
Collapse
|
2
|
Seco-González A, Antelo-Riveiro P, Bravo SB, Garrido PF, Domínguez-Santalla MJ, Rodríguez-Ruiz E, Piñeiro Á, Garcia-Fandino R. Proteomic analysis of post-COVID condition: Insights from plasma and pellet blood fractions. J Infect Public Health 2024; 17:102571. [PMID: 39486386 DOI: 10.1016/j.jiph.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Persistent symptoms extending beyond the acute phase of SARS-CoV-2 infection, known as Post-COVID condition (PCC), continue to impact many individuals years after the COVID-19 pandemic began. This highlights an urgent need for a deeper understanding and effective treatments. While significant progress has been made in understanding the acute phase of COVID-19 through omics-based approaches, the proteomic alterations linked to the long-term effects of the infection remain underexplored. This study aims to investigate these proteomic changes and develop a method for stratifying disease severity. METHODS Using Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH-MS) technology, we performed comprehensive proteomic profiling of blood samples from 65 PCC patients. Both plasma and pellet (cellular components) fractions were analyzed to capture a wide array of proteomic changes associated with PCC. RESULTS Proteomic profiling revealed distinct differences between symptomatic and asymptomatic PCC patients. In the plasma fraction, symptomatic patients exhibited significant upregulation of proteins involved in coagulation, immune response, oxidative stress, and various metabolic processes, while certain immunoglobulins and proteins involved in cellular stress responses were downregulated. In the pellet fraction, symptomatic patients showed upregulation of proteins related to immune response, coagulation, oxidative stress, and metabolic enzymes, with downregulation observed in components of the complement system, glycolysis enzymes, and cytoskeletal proteins. A key outcome was the development of a novel severity scale based on the concentration of identified proteins, which correlated strongly with the clinical symptoms of PCC. This scale, derived from unsupervised clustering analysis, provides precise quantification of PCC severity, enabling effective patient stratification. CONCLUSIONS The identified proteomic alterations offer valuable insights into the molecular mechanisms underlying PCC, highlighting potential biomarkers and therapeutic targets. This research supports the development of tailored clinical interventions to alleviate persistent symptoms, ultimately enhancing patient outcomes and quality of life. The quantifiable measure of disease severity aids clinicians in understanding the condition in individual patients, facilitating personalized treatment plans and accurate monitoring of disease progression and response to therapy.
Collapse
Affiliation(s)
- Alejandro Seco-González
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
| | - Paula Antelo-Riveiro
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain; Soft Matter & Molecular Biophysics Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - P F Garrido
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - M J Domínguez-Santalla
- Internal Medicine Department, University Clinic Hospital of Santiago de Compostela (CHUS), Galician Public Health System (SERGAS), Santiago de Compostela, Spain
| | - E Rodríguez-Ruiz
- Intensive Care Medicine Department, University Clinic Hospital of Santiago de Compostela (CHUS), Galician Public Health System (SERGAS), Santiago de Compostela, Spain; Simulation, Life Support & Intensive Care Research Unit of Santiago de Compostela (SICRUS), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; CLINURSID Research Group, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Á Piñeiro
- Soft Matter & Molecular Biophysics Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Spain.
| | - R Garcia-Fandino
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain.
| |
Collapse
|
3
|
López-Valverde L, Vázquez-Mosquera ME, Colón-Mejeras C, Bravo SB, Barbosa-Gouveia S, Álvarez JV, Sánchez-Martínez R, López-Mendoza M, López-Rodríguez M, Villacorta-Argüelles E, Goicoechea-Diezhandino MA, Guerrero-Márquez FJ, Ortolano S, Leao-Teles E, Hermida-Ameijeiras Á, Couce ML. Characterization of the plasma proteomic profile of Fabry disease: Potential sex- and clinical phenotype-specific biomarkers. Transl Res 2024; 269:47-63. [PMID: 38395389 DOI: 10.1016/j.trsl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Fabry disease (FD) is a X-linked rare lysosomal storage disorder caused by deficient α-galactosidase A (α-GalA) activity. Early diagnosis and the prediction of disease course are complicated by the clinical heterogeneity of FD, as well as by the frequently inconclusive biochemical and genetic test results that do not correlate with clinical course. We sought to identify potential biomarkers of FD to better understand the underlying pathophysiology and clinical phenotypes. We compared the plasma proteomes of 50 FD patients and 50 matched healthy controls using DDA and SWATH-MS. The >30 proteins that were differentially expressed between the 2 groups included proteins implicated in processes such as inflammation, heme and haemoglobin metabolism, oxidative stress, coagulation, complement cascade, glucose and lipid metabolism, and glycocalyx formation. Stratification by sex revealed that certain proteins were differentially expressed in a sex-dependent manner. Apolipoprotein A-IV was upregulated in FD patients with complications, especially those with chronic kidney disease, and apolipoprotein C-III and fetuin-A were identified as possible markers of FD with left ventricular hypertrophy. All these proteins had a greater capacity to identify the presence of complications in FD patients than lyso-GB3, with apolipoprotein A-IV standing out as being more sensitive and effective in differentiating the presence and absence of chronic kidney disease in FD patients than renal markers such as creatinine, glomerular filtration rate and microalbuminuria. Identification of these potential biomarkers can help further our understanding of the pathophysiological processes that underlie the heterogeneous clinical manifestations associated with FD.
Collapse
Affiliation(s)
- Laura López-Valverde
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristóbal Colón-Mejeras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Sofía Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - J Víctor Álvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Rosario Sánchez-Martínez
- Internal Medicine Department, Alicante General University Hospital-Alicante Institute of Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante 03010, Spain
| | - Manuel López-Mendoza
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Manuel Siurot s/n, Sevilla 41013, Spain
| | - Mónica López-Rodríguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Colmenar Viejo, Madrid 28034, Spain; Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), Av. de Madrid, Alcalá de Henares 28871, Spain
| | - Eduardo Villacorta-Argüelles
- Department of Cardiology, Complejo Asistencial Universitario de Salamanca, P°. de San Vicente 58, Salamanca 37007, Spain
| | | | - Francisco J Guerrero-Márquez
- Department of Cardiology, Internal Medicine Service, Hospital de la Serranía, San Pedro, Ronda, Málaga 29400, Spain
| | - Saida Ortolano
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute-SERGAS-UVIGO, Clara Campoamor 341, Vigo 36213, Spain
| | - Elisa Leao-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São João, Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| |
Collapse
|
4
|
Decreased Levels of Chaperones in Mucopolysaccharidoses and Their Elevation as a Putative Auxiliary Therapeutic Approach. Pharmaceutics 2023; 15:pharmaceutics15020704. [PMID: 36840025 PMCID: PMC9967431 DOI: 10.3390/pharmaceutics15020704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are rare genetic disorders belonging to the lysosomal storage diseases. They are caused by mutations in genes encoding lysosomal enzymes responsible for degrading glycosaminoglycans (GAGs). As a result, GAGs accumulate in lysosomes, leading to impairment of cells, organs and, consequently, the entire body. Many of the therapies proposed thus far require the participation of chaperone proteins, regardless of whether they are therapies in common use (enzyme replacement therapy) or remain in the experimental phase (gene therapy, STOP-codon-readthrough therapy). Chaperones, which include heat shock proteins, are responsible for the correct folding of other proteins to the most energetically favorable conformation. Without their appropriate levels and activities, the correct folding of the lysosomal enzyme, whether supplied from outside or synthesized in the cell, would be impossible. However, the baseline level of nonspecific chaperone proteins in MPS has never been studied. Therefore, the purpose of this work was to determine the basal levels of nonspecific chaperone proteins of the Hsp family in MPS cells and to study the effect of normalizing GAG concentrations on these levels. Results of experiments with fibroblasts taken from patients with MPS types I, II, IIIA, IIIB, IIIC, IID, IVA, IVB, VI, VII, and IX, as well as from the brains of MPS I mice (Idua-/-), indicated significantly reduced levels of the two chaperones, Hsp70 and Hsp40. Interestingly, the reduction in GAG levels in the aforementioned cells did not lead to normalization of the levels of these chaperones but caused only a slight increase in the levels of Hsp40. An additional transcriptomic analysis of MPS cells indicated that the expression of other genes involved in protein folding processes and the cell response to endoplasmic reticulum stress, resulting from the appearance of abnormally folded proteins, was also modulated. To summarize, reduced levels of chaperones may be an additional cause of the low activity or inactivity of lysosomal enzymes in MPS. Moreover, this may point to causes of treatment failure where the correct structure of the enzyme supplied or synthesized in the cell is crucial to lower GAG levels.
Collapse
|
5
|
Zhang C, Gawri R, Lau YK, Spruce LA, Fazelinia H, Jiang Z, Jo SY, Scanzello CR, Mai W, Dodge GR, Casal ML, Smith LJ. Proteomics identifies novel biomarkers of synovial joint disease in a canine model of mucopolysaccharidosis I. Mol Genet Metab 2023; 138:107371. [PMID: 36709534 PMCID: PMC9918716 DOI: 10.1016/j.ymgme.2023.107371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Mucopolysaccharidosis I is a lysosomal storage disorder characterized by deficient alpha-L-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a critical need for improved understanding of joint disease pathophysiology in MPS I, including specific biomarkers to predict and monitor joint disease progression, and response to treatment. The objective of this study was to leverage the naturally-occurring MPS I canine model and undertake an unbiased proteomic screen to identify systemic biomarkers predictive of local joint disease in MPS I. Synovial fluid and serum samples were collected from MPS I and healthy dogs at 12 months-of-age, and protein abundance characterized using liquid chromatography tandem mass spectrometry. Stifle joints were evaluated postmortem using magnetic resonance imaging (MRI) and histology. Proteomics identified 40 proteins for which abundance was significantly correlated between serum and synovial fluid, including markers of inflammatory joint disease and lysosomal dysfunction. Elevated expression of three biomarker candidates, matrix metalloproteinase 19, inter-alpha-trypsin inhibitor heavy-chain 3 and alpha-1-microglobulin, was confirmed in MPS I cartilage, and serum abundance of these molecules was found to correlate with MRI and histological degenerative grades. The candidate biomarkers identified have the potential to improve patient care by facilitating minimally-invasive, specific assessment of joint disease progression and response to therapeutic intervention.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Rahul Gawri
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America
| | - Hossein Fazelinia
- Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America
| | - Zhirui Jiang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Stephanie Y Jo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Carla R Scanzello
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Ave, Philadelphia, PA 19104, USA
| | - Wilfried Mai
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104, USA
| | - George R Dodge
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104, USA
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Chantada-Vázquez MDP, Bravo SB, Barbosa-Gouveia S, Alvarez JV, Couce ML. Proteomics in Inherited Metabolic Disorders. Int J Mol Sci 2022; 23:14744. [PMID: 36499071 PMCID: PMC9740208 DOI: 10.3390/ijms232314744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Inherited metabolic disorders (IMD) are rare medical conditions caused by genetic defects that interfere with the body's metabolism. The clinical phenotype is highly variable and can present at any age, although it more often manifests in childhood. The number of treatable IMDs has increased in recent years, making early diagnosis and a better understanding of the natural history of the disease more important than ever. In this review, we discuss the main challenges faced in applying proteomics to the study of IMDs, and the key advances achieved in this field using tandem mass spectrometry (MS/MS). This technology enables the analysis of large numbers of proteins in different body fluids (serum, plasma, urine, saliva, tears) with a single analysis of each sample, and can even be applied to dried samples. MS/MS has thus emerged as the tool of choice for proteome characterization and has provided new insights into many diseases and biological systems. In the last 10 years, sequential window acquisition of all theoretical fragmentation spectra mass spectrometry (SWATH-MS) has emerged as an accurate, high-resolution technique for the identification and quantification of proteins differentially expressed between healthy controls and IMD patients. Proteomics is a particularly promising approach to help obtain more information on rare genetic diseases, including identification of biomarkers to aid early diagnosis and better understanding of the underlying pathophysiology to guide the development of new therapies. Here, we summarize new and emerging proteomic technologies and discuss current uses and limitations of this approach to identify and quantify proteins. Moreover, we describe the use of proteomics to identify the mechanisms regulating complex IMD phenotypes; an area of research essential to better understand these rare disorders and many other human diseases.
Collapse
Affiliation(s)
- Maria del Pilar Chantada-Vázquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Barbosa-Gouveia
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - José V. Alvarez
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - María L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Lin SY, Zhou T, Cai S, Hu ZW, Zhong J, Dong L. Proteomic characteristics of saliva in patients with different subgroups of IgG4-RD. Front Immunol 2022; 13:1026921. [PMID: 36483554 PMCID: PMC9723444 DOI: 10.3389/fimmu.2022.1026921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Immunoglobulin G4-related disease (IgG4-RD) is a newly defined disease entity, with great heterogeneity among IgG4-RD subgroups with different organ involvement patterns. Identification of the proteomic characteristics of IgG4-RD subgroups will be critical for the understanding of the pathogenic mechanisms of IgG4-RD. Method In this study, we performed proteomic analysis using Tandem Mass Tags (TMT) technology with "high field" mass analyzer with improved resolution and sequencing speed to investigate the proteomic profile of saliva and plasma samples from ten untreated IgG4-RD patients and five healthy controls (HCs). Differentially expressed proteins (DEPs) were identified by "t test" function in R package. Functional enrichment analysis was used to investigate pathways enriched in IgG4-RD samples. Results Most salivary DEPs identified in IgG4-RD patients compared with HCs were mainly enriched in neutrophil mediated GO bioprocess. Within the comparisons between four IgG4-RD subgroups, more DEPs were identified in the comparison of Mikulicz group and Head and neck group. Among four subgroups of IgG4-RD, Head and neck group showed the most distinctive proteomic expression pattern when compared with HCs. Moreover, "Neutrophil mediated process" related GO bioprocess was commonly identified between comparisons of Mikulicz group and Head and neck group, Head and neck group and Retroperitoneal aorta group, Head and neck group and HCs, IgG4-RD patients with saliva gland involvement and those without saliva gland involvement. Key DEPs that involved in this GO bioprocess were identified. Besides, we performed proteomic analysis for plasma samples between ten IgG4-RD and five HCs and there were several DEPs identified overlapped in saliva and plasma. Conclusion We identified multiple processes/factors and several signaling pathways in saliva that may be involved in the IgG4-RD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Nakamura-Utsunomiya A. Bone Biomarkers in Mucopolysaccharidoses. Int J Mol Sci 2021; 22:ijms222312651. [PMID: 34884458 PMCID: PMC8658023 DOI: 10.3390/ijms222312651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 01/11/2023] Open
Abstract
The accumulation of glycosaminoglycans (GAGs) in bone and cartilage leads to progressive damage in cartilage that, in turn, reduces bone growth by the destruction of the growth plate, incomplete ossification, and growth imbalance. The mechanisms of pathophysiology related to bone metabolism in mucopolysaccharidoses (MPS) include impaired chondrocyte function and the failure of endochondral ossification, which leads to the release of inflammatory cytokines via the activation of Toll-like receptors by GAGs. Although improvements in the daily living of patients with MPS have been achieved with enzyme replacement, treatment for the bone disorder is limited. There is an increasing need to identify biomarkers related to bone and cartilage to evaluate the progressive status and to monitor the treatment of MPS. Recently, new analysis methods, such as proteomic analysis, have identified new biomarkers in MPS. This review summarizes advances in clinical bone metabolism and bone biomarkers.
Collapse
Affiliation(s)
- Akari Nakamura-Utsunomiya
- Department of Pediatrics, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-254-1818; Fax: +81-82-253-8274
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|