1
|
Jakopec S, Hamzic LF, Bočkor L, Car I, Perić B, Kirin SI, Sedić M, Raić-Malić S. Coumarin-modified ruthenium complexes: Synthesis, characterization, and antiproliferative activity against human cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400271. [PMID: 38864840 DOI: 10.1002/ardp.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
Among ruthenium complexes studied as anticancer metallodrugs, NKP-1339, NAMI-A, RM175, and RAPTA-C have already entered clinical trials due to their potent antitumor activity demonstrated in preclinical studies and reduced toxicity in comparison with platinum drugs. Considering the advantages of ruthenium-based anticancer drugs and the cytostatic activity of organometallic complexes with triazole- and coumarin-derived ligands, we set out to synthesize Ru(II) complexes of coumarin-1,2,3,-triazole hybrids (L) with the general formula [Ru(L)(p-cymene)(Cl)]ClO4. The molecular structure of the complex [Ru(2a)(p-cymene)(Cl)]ClO4 (2aRu) was determined by single-crystal X-ray diffraction, which confirmed the coordination of the ligand to the central ruthenium(II) cation by bidentate mode of coordination. Coordination with Ru(II) resulted in the enhancement of cytostatic activity in HepG2 hepatocellular carcinoma cells and PANC-1 pancreatic cancer cells. Coumarin derivative 2a positively regulated the expression and activity of c-Myc and NPM1 in RKO colon carcinoma cells, while the Ru(II) half-sandwich complex 2cRu induced downregulation of AKT and ERK signaling in PANC-1 cells concomitant with reduced intracellular levels of reactive oxygen species. Altogether, our findings indicated that coumarin-modified half-sandwich Ru(II) complexes held potential as anticancer agents against gastrointestinal malignancies.
Collapse
Affiliation(s)
- Silvio Jakopec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Lejla F Hamzic
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Iris Car
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Berislav Perić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Srećko I Kirin
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Wei Q, Zhou J, Wang X, Li Z, Chen X, Chen K, Jiang R. Pan-cancer analysis of the prognostic and immunological role of nucleophosmin/nucleoplasmin 3 ( NPM3) and its potential significance in lung adenocarcinoma. CANCER PATHOGENESIS AND THERAPY 2023; 1:238-252. [PMID: 38327603 PMCID: PMC10846304 DOI: 10.1016/j.cpt.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 02/09/2024]
Abstract
Background Nucleophosmin/nucleoplasmin 3 (NPM3), a member of the NPM protein family, is widely expressed in various human tissues. Although previous studies identified elevated NPM3 expression in several cancers, a systematic pan-cancer analysis remains lacking. In this study, we conducted a comprehensive analysis of NPM3 to determine its role in tumorigenesis and tumor development. Methods Using data from The Cancer Genome Atlas (TCGA) and various bioinformatics analysis tools, we conducted a pan-cancer analysis of NPM3. Additionally, we collected gene expression and clinical data from 890 patients with lung adenocarcinoma (LUAD) from TCGA and the Gene Expression Omnibus database. We performed Cox regression analyses to explore the independent prognostic value of NPM3 expression in LUAD and plotted a nomogram to predict patient survival. We also used real-time quantitative polymerase chain reaction (RT-qPCR) to examine the expression levels of NPM3 in seven pairs of LUAD and paraneoplastic tissue samples. Results NPM3 expression was significantly increased in 20 types of cancer and was associated with poor prognosis in five types (P < 0.05). NPM3 expression was negatively correlated with DNA methylation and positively correlated with copy number variation. NPM3 was also significantly associated with immune cell infiltration in various cancers. Cox regression analyses revealed that NPM3 expression could serve as an independent prognostic marker of LUAD. Moreover, our nomogram demonstrated good predictive ability for the prognosis of patients with LUAD. Finally, the high expression of NPM3 in LUAD was verified using RT-qPCR. Conclusion NPM3 is a promising biomarker for predicting pan-cancer prognosis and immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Qianhui Wei
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Zhaona Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Xiuqiong Chen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Kaidi Chen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| |
Collapse
|
3
|
Car I, Dittmann A, Klobučar M, Grbčić P, Kraljević Pavelić S, Sedić M. Secretome Screening of BRAFV600E-Mutated Colon Cancer Cells Resistant to Vemurafenib. BIOLOGY 2023; 12:biology12040608. [PMID: 37106808 PMCID: PMC10136293 DOI: 10.3390/biology12040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Patients with metastatic colorectal cancer (mCRC) carrying BRAFV600E mutation have worse response to chemotherapy and poor prognosis. The BRAFV600E inhibitor vemurafenib has shown modest efficacy as monotherapy in BRAF-mutated mCRC due to the development of resistance. The aim of this study was to conduct a comparative proteomics profiling of the secretome from vemurafenib-sensitive vs. -resistant colon cancer cells harboring BRAFV600E mutation in order to identify specific secretory features potentially associated with changes in the resistant cells' phenotype. Towards this aim, we employed two complementary proteomics approaches including two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF mass spectrometry and label-free quantitative LC-MS/MS analysis. Obtained results pointed to aberrant regulation of DNA replication and endoplasmic reticulum stress as the major secretome features associated with chemoresistant phenotype. Accordingly, two proteins implicated in these processes including RPA1 and HSPA5/GRP78 were discussed in more details in the context of biological networks and their importance as potential secretome targets for further functional and clinical evaluation. Expression patterns of RPA1 and HSPA5/GRP78 in tumor tissues from colon cancer patients were also found in additional in silico analyses to be associated with BRAFV600E mutation status, which opens the possibility to extrapolate our findings and their clinical implication to other solid tumors harboring BRAFV600E mutation, such as melanoma.
Collapse
Affiliation(s)
- Iris Car
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
| | - Antje Dittmann
- Functional Genomics Center Zurich, ETH Zurich, Winterthurerstr. 190, Y59 H38, 8057 Zurich, Switzerland
| | - Marko Klobučar
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
| | - Petra Grbčić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka ul. 30, 52100 Pula, Croatia
| | | | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
5
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022] Open
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
6
|
Zhao Z, Cai Z, Jiang T, Han J, Zhang B. Histone Chaperones and Digestive Cancer: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14225584. [PMID: 36428674 PMCID: PMC9688693 DOI: 10.3390/cancers14225584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The global burden of digestive cancer is expected to increase. Therefore, crucial for the prognosis of patients with these tumors is to identify early diagnostic markers or novel therapeutic targets. There is accumulating evidence connecting histone chaperones to the pathogenesis of digestive cancer. Histone chaperones are now broadly defined as a class of proteins that bind histones and regulate nucleosome assembly. Recent studies have demonstrated that multiple histone chaperones are aberrantly expressed and have distinct roles in digestive cancers. OBJECTIVE The purpose of this review is to present the current evidence regarding the role of histone chaperones in digestive cancer, particularly their mechanism in the development and progression of esophageal, gastric, liver, pancreatic, and colorectal cancers. In addition, the prognostic significance of particular histone chaperones in patients with digestive cancer is discussed. METHODS According to PRISMA guidelines, we searched the PubMed, Embase, and MEDLINE databases to identify studies on histone chaperones and digestive cancer from inception until June 2022. RESULTS A total of 104 studies involving 21 histone chaperones were retrieved. CONCLUSIONS This review confirms the roles and mechanisms of selected histone chaperones in digestive cancer and suggests their significance as potential prognostic biomarkers and therapeutic targets. However, due to their non-specificity, more research on histone chaperones should be conducted in the future to elucidate novel strategies of histone chaperones for prognosis and treatment of digestive cancer.
Collapse
Affiliation(s)
- Zhou Zhao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaolun Cai
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxiang Jiang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Fax: +86-28-854-228-72
| |
Collapse
|
7
|
In silico high throughput screening and in vitro validation of a novel Raf/Mek dual inhibitor against colorectal carcinoma. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Association between Altered Oncogenic Signaling Pathways and Overall Survival of Patients with Metastatic Colorectal Cancer. Diagnostics (Basel) 2021; 11:diagnostics11122308. [PMID: 34943546 PMCID: PMC8700603 DOI: 10.3390/diagnostics11122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Systemic characterization of genomic alterations into signaling pathways helps to understand the molecular pathogenies of colorectal cancer; however, their clinical implications remain unclear. Here, 128 patients with metastatic colorectal cancer (mCRC) receiving targeted next generation sequencing were retrospectively enrolled to analyze the impact of altered oncogenic pathways on clinical outcome. The datasets from Memorial Sloan Kettering Cancer Center were used for validation. In 123 patients with non-MSI-high tumor, the most common mutated gene was TP53 (84.6%), followed by APC (78.0%), KRAS (49.6%), and SMAD4 (22.8%). When mutated genes were allocated into signaling pathways defined as The Cancer Genome Atlas Pan-Cancer Analysis Project, alterations of cell cycle, Wnt, p53, RTK-RAS, PI3K, TGF-β, Notch, and Myc pathways were identified in 88%, 87%, 85%, 75%, 28%, 26%, 17%, and 10% of mCRC tissues, respectively. The survival analyses revealed that Myc and TGF-β pathway alterations were associated with a shorter overall survival (OS) (hazard ratio [HR]: 2.412; 95% confidence interval [CI]: 1.139–5.109; p = 0.018 and HR: 2.754; 95% CI: 1.044–7.265; p = 0.033, respectively). The negative prognostic impact of altered TGF-β pathway was maintained in patients receiving an anti-EGFR antibody. The OS of patients with mCRC carrying MYC and BRAF mutation was shorter than those with either MYC or BRAF mutation (HR: 4.981, 95% CI: 0.296–83.92; p = 0.02). These findings have clinical implications, such as prognosis prediction, treatment guidance, and molecular-targeted therapy development.
Collapse
|
9
|
Grbčić P, Eichmann TO, Kraljević Pavelić S, Sedić M. The Sphingosine Kinase 2 Inhibitor ABC294640 Restores the Sensitivity of BRAFV600E Mutant Colon Cancer Cells to Vemurafenib by Reducing AKT-Mediated Expression of Nucleophosmin and Translationally-Controlled Tumour Protein. Int J Mol Sci 2021; 22:ijms221910767. [PMID: 34639107 PMCID: PMC8509245 DOI: 10.3390/ijms221910767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023] Open
Abstract
Vemurafenib (PLX4032), small-molecule inhibitor of mutated BRAFV600E protein, has emerged as a potent anti-cancer agent against metastatic melanoma harboring BRAFV600E mutation. Unfortunately, the effect of PLX4032 in the treatment of metastatic BRAF mutated colorectal cancer (CRC) is less potent due to high incidence of fast-developing chemoresistance. It has been demonstrated that sphingolipids are important mediators of chemoresistance to various therapies in colon cancer. In this study, we will explore the role of major regulators of sphingolipid metabolism and signaling in the development of resistance to vemurafenib in BRAF mutant colon cancer cells. The obtained data revealed significantly increased expression levels of activated sphingosine kinases (SphK1 and SphK2) in resistant cells concomitant with increased abundance of sphingosine-1-phosphate (S1P) and its precursor sphingosine, which was accompanied by increased expression levels of the enzymes regulating the ceramide salvage pathway, namely ceramide synthases 2 and 6 and acid ceramidase, especially after the exposure to vemurafenib. Pharmacological inhibition of SphK1/SphK2 activities or modulation of ceramide metabolism by exogenous C6-ceramide enhanced the anti-proliferative effect of PLX4032 in resistant RKO cells in a synergistic manner. It is important to note that the inhibition of SphK2 by ABC294640 proved effective at restoring the sensitivity of resistant cells to vemurafenib at the largest number of combinations of sub-toxic drug concentrations with minimal cytotoxicity. Furthermore, the obtained findings revealed that enhanced anti-proliferative, anti-migratory, anti-clonogenic and pro-apoptotic effects of a combination treatment with ABC294640 and PLX4032 relative to either drug alone were accompanied by the inhibition of S1P-regulated AKT activity and concomitant abrogation of AKT-mediated cellular levels of nucleophosmin and translationally-controlled tumour protein. Collectively, our study suggests the possibility of using the combination of ABC294640 and PLX4032 as a novel therapeutic approach to combat vemurafenib resistance in BRAF mutant colon cancer, which warrants additional preclinical validation studies.
Collapse
Affiliation(s)
- Petra Grbčić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Thomas O. Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/III, 8010 Graz, Austria;
| | | | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-5535-135
| |
Collapse
|