1
|
Meng X, Song Q, Liu Z, Liu X, Wang Y, Liu J. Neurotoxic β-amyloid oligomers cause mitochondrial dysfunction-the trigger for PANoptosis in neurons. Front Aging Neurosci 2024; 16:1400544. [PMID: 38808033 PMCID: PMC11130508 DOI: 10.3389/fnagi.2024.1400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that β-amyloid protein (Aβ) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aβ protein antibodies is not satisfactory, suggesting that Aβ amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aβ (AβO) in 1998, scientists began to focus on the neurotoxicity of AβOs. As an endogenous neurotoxin, the active growth of AβOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AβOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AβO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AβOs and elucidates how AβOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
2
|
Varbanov H, Jia S, Kochlamazashvili G, Bhattacharya S, Buabeid MA, El Tabbal M, Hayani H, Stoyanov S, Sun W, Thiesler H, Röckle I, Hildebrandt H, Senkov O, Suppiramaniam V, Gerardy-Schahn R, Dityatev A. Rescue of synaptic and cognitive functions in polysialic acid-deficient mice and dementia models by short polysialic acid fragments. Neurobiol Dis 2023; 180:106079. [PMID: 36918046 DOI: 10.1016/j.nbd.2023.106079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Dysregulated cortical expression of the neural cell adhesion molecule (NCAM) and deficits of its associated polysialic acid (polySia) have been found in Alzheimer's disease and schizophrenia. However, the functional role of polySia in cortical synaptic plasticity remains poorly understood. Here, we show that acute enzymatic removal of polySia in medial prefrontal cortex (mPFC) slices leads to increased transmission mediated by the GluN1/GluN2B subtype of N-methyl-d-aspartate receptors (NMDARs), increased NMDAR-mediated extrasynaptic tonic currents, and impaired long-term potentiation (LTP). The latter could be fully rescued by pharmacological suppression of GluN1/GluN2B receptors, or by application of short soluble polySia fragments that inhibited opening of GluN1/GluN2B channels. These treatments and augmentation of synaptic NMDARs with the glycine transporter type 1 (GlyT1) inhibitor sarcosine also restored LTP in mice deficient in polysialyltransferase ST8SIA4. Furthermore, the impaired performance of polySia-deficient mice and two models of Alzheimer's disease in the mPFC-dependent cognitive tasks could be rescued by intranasal administration of polySia fragments. Our data demonstrate the essential role of polySia-NCAM in the balancing of signaling through synaptic/extrasynaptic NMDARs in mPFC and highlight the therapeutic potential of short polySia fragments to restrain GluN1/GluN2B-mediated signaling.
Collapse
Affiliation(s)
- Hristo Varbanov
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Neurophysiology, Hannover Medical School, OE 4230, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Shaobo Jia
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Gaga Kochlamazashvili
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Subhrajit Bhattacharya
- School of Pharmaceutical and Health Sciences, Keck Graduate Institute, Claremont Colleges, Claremont, CA 91711, USA
| | - Manal Ali Buabeid
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Mohamed El Tabbal
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hussam Hayani
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Weilun Sun
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hauke Thiesler
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Iris Röckle
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Herbert Hildebrandt
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Bünteweg 2, 30559 Hannover, Germany
| | - Oleg Senkov
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL 36849, USA; College of Science and Mathematics, Kennesaw State University, GA 30144, USA
| | - Rita Gerardy-Schahn
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
3
|
Rostagno AA. Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010107. [PMID: 36613544 PMCID: PMC9820480 DOI: 10.3390/ijms24010107] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, accounting for 60% to 80% of all cases [...].
Collapse
Affiliation(s)
- Agueda A Rostagno
- Department of Pathology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
4
|
Turcu AL, Companys-Alemany J, Phillips MB, Patel DS, Griñán-Ferré C, Loza MI, Brea JM, Pérez B, Soto D, Sureda FX, Kurnikova MG, Johnson JW, Pallàs M, Vázquez S. Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease. Eur J Med Chem 2022; 236:114354. [PMID: 35453065 PMCID: PMC9106868 DOI: 10.1016/j.ejmech.2022.114354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
Abstract
Currently, of the few accessible symptomatic therapies for Alzheimer's disease (AD), memantine is the only N-methyl-d-aspartate receptor (NMDAR) blocker approved by the FDA. This work further explores a series of memantine analogs featuring a benzohomoadamantane scaffold. Most of the newly synthesized compounds block NMDARs in the micromolar range, but with lower potency than previously reported hit IIc, results that were supported by molecular dynamics simulations. Subsequently, electrophysiological studies with the more potent compounds allowed classification of IIc, a low micromolar, uncompetitive, voltage-dependent, NMDAR blocker, as a memantine-like compound. The excellent in vitro DMPK properties of IIc made it a promising candidate for in vivo studies in Caenorhabditis elegans (C. elegans) and in the 5XFAD mouse model of AD. Administration of IIc or memantine improved locomotion and rescues chemotaxis behavior in C. elegans. Furthermore, both compounds enhanced working memory in 5XFAD mice and modified NMDAR and CREB signaling, which may prevent synaptic dysfunction and modulate neurodegenerative progression.
Collapse
Affiliation(s)
- Andreea L Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain; Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Matthew B Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Dhilon S Patel
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - M Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E, 15706, Santiago de Compostela, Spain
| | - José M Brea
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E, 15706, Santiago de Compostela, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193, Bellaterra, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Francesc X Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Zhu MH, Jogdand AH, Jang J, Nagella SC, Das B, Milosevic MM, Yan R, Antic SD. Evoked Cortical Depolarizations Before and After the Amyloid Plaque Accumulation: Voltage Imaging Study. J Alzheimers Dis 2022; 88:1443-1458. [PMID: 35811528 PMCID: PMC10493004 DOI: 10.3233/jad-220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), synaptic dysfunction is thought to occur many years before the onset of cognitive decline. OBJECTIVE Detecting synaptic dysfunctions at the earliest stage of AD would be desirable in both clinic and research settings. METHODS Population voltage imaging allows monitoring of synaptic depolarizations, to which calcium imaging is relatively blind. We developed an AD mouse model (APPswe/PS1dE9 background) expressing a genetically-encoded voltage indicator (GEVI) in the neocortex. GEVI was restricted to the excitatory pyramidal neurons (unlike the voltage-sensitive dyes). RESULTS Expression of GEVI did not disrupt AD model formation of amyloid plaques. GEVI expression was stable in both AD model mice and Control (healthy) littermates (CTRL) over 247 days postnatal. Brain slices were stimulated in layer 2/3. From the evoked voltage waveforms, we extracted several parameters for comparison AD versus CTRL. Some parameters (e.g., temporal summation, refractoriness, and peak latency) were weak predictors, while other parameters (e.g., signal amplitude, attenuation with distance, and duration (half-width) of the evoked transients) were stronger predictors of the AD condition. Around postnatal age 150 days (P150) and especially at P200, synaptically-evoked voltage signals in brain slices were weaker in the AD groups versus the age- and sex-matched CTRL groups, suggesting an AD-mediated synaptic weakening that coincides with the accumulation of plaques. However, at the youngest ages examined, P40 and P80, the AD groups showed differentially stronger signals, suggesting "hyperexcitability" prior to the formation of plaques. CONCLUSION Our results indicate bidirectional alterations in cortical physiology in AD model mice; occurring both prior (P40-80), and after (P150-200) the amyloid deposition.
Collapse
Affiliation(s)
- Mei Hong Zhu
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Aditi H Jogdand
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Jinyoung Jang
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Sai C Nagella
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Brati Das
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Milena M Milosevic
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| | - Srdjan D Antic
- Department of Neuroscience, UConn Health, School of Medicine, Farmington, CT, USA
| |
Collapse
|
6
|
C57BL/6 Background Attenuates mHTT Toxicity in the Striatum of YAC128 Mice. Int J Mol Sci 2021; 22:ijms222312664. [PMID: 34884469 PMCID: PMC8657915 DOI: 10.3390/ijms222312664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/05/2022] Open
Abstract
Mouse models are frequently used to study Huntington’s disease (HD). The onset and severity of neuronal and behavioral pathologies vary greatly between HD mouse models, which results from different huntingtin expression levels and different CAG repeat length. HD pathology appears to depend also on the strain background of mouse models. Thus, behavioral deficits of HD mice are more severe in the FVB than in the C57BL/6 background. Alterations in medium spiny neuron (MSN) morphology and function have been well documented in young YAC128 mice in the FVB background. Here, we tested the relevance of strain background for mutant huntingtin (mHTT) toxicity on the cellular level by investigating HD pathologies in YAC128 mice in the C57BL/6 background (YAC128/BL6). Morphology, spine density, synapse function and membrane properties were not or only subtly altered in MSNs of 12-month-old YAC128/BL6 mice. Despite the mild cellular phenotype, YAC128/BL6 mice showed deficits in motor performance. More pronounced alterations in MSN function were found in the HdhQ150 mouse model in the C57BL/6 background (HdhQ150/BL6). Consistent with the differences in HD pathology, the number of inclusion bodies was considerably lower in YAC128/BL6 mice than HdhQ150/BL6 mice. This study highlights the relevance of strain background for mHTT toxicity in HD mouse models.
Collapse
|