1
|
Dang HX, Saha D, Jayasinghe R, Zhao S, Coonrod E, Mudd J, Goedegebuure S, Fields R, Ding L, Maher C. Single-cell transcriptomics reveals long noncoding RNAs associated with tumor biology and the microenvironment in pancreatic cancer. NAR Cancer 2023; 5:zcad055. [PMID: 38023733 PMCID: PMC10664695 DOI: 10.1093/narcan/zcad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly heterogeneous and lethal. Long noncoding RNAs (lncRNAs) are an important class of genes regulating tumorigenesis and progression. Prior bulk transcriptomic studies in PDAC have revealed the dysregulation of lncRNAs but lack single-cell resolution to distinguish lncRNAs in tumor-intrinsic biology and the tumor microenvironment (TME). We analyzed single-cell transcriptome data from 73 multiregion samples in 21 PDAC patients to evaluate lncRNAs associated with intratumoral heterogeneity and the TME in PDAC. We found 111 cell-specific lncRNAs that reflected tumor, immune and stromal cell contributions, associated with outcomes, and validated across orthogonal datasets. Single-cell analysis of tumor cells revealed lncRNAs associated with TP53 mutations and FOLFIRINOX treatment that were obscured in bulk tumor analysis. Lastly, tumor subcluster analysis revealed widespread intratumor heterogeneity and intratumoral lncRNAs associated with cancer hallmarks and tumor processes such as angiogenesis, epithelial-mesenchymal transition, metabolism and immune signaling. Intratumoral subclusters and lncRNAs were validated across six datasets and showed clinically relevant associations with patient outcomes. Our study provides the first comprehensive assessment of the lncRNA landscape in PDAC using single-cell transcriptomic data and can serve as a resource, PDACLncDB (accessible at https://www.maherlab.com/pdaclncdb-overview), to guide future functional studies.
Collapse
Affiliation(s)
- Ha X Dang
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO 63108, USA
| | - Debanjan Saha
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- MD–PhD Program, Washington University in St Louis, St Louis, MO 63110, USA
| | - Reyka Jayasinghe
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Sidi Zhao
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Emily Coonrod
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ryan Fields
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Li Ding
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
2
|
Li S, Xie Y, Zhou W, Zhou Q, Tao D, Yang H, Mao K, Li S, Lei J, Wu Y, Wang Y. Association of long noncoding RNA MALAT1 with the radiosensitivity of lung adenocarcinoma cells via the miR-140/PD-L1 axis. Heliyon 2023; 9:e16868. [PMID: 37332979 PMCID: PMC10272336 DOI: 10.1016/j.heliyon.2023.e16868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Objective To investigate the effect of MALAT1 on the modulating the radiosensitivity of lung adenocarcinoma, through regulation of the expression of the miR-140/PD-L1 axis. Methods The online databases UALCAN and dbDEMC were searched for the MALAT1 and miR-140 expressions in patients with lung adenocarcinoma (LUAD), respectively. Then analyze their relationship with overall survival rates separately in the UALCAN and ONCOMIR databases. A functional analysis was performed for A549 cells by transfecting small-interfering RNAs or corresponding plasmids after radiotherapy. Xenograft models of LUAD exposed to radiation were established to further observe the effects of MALAT1 on the radiosensitivity of LUAD. The luciferase assay and reverse transcription-polymerase chain reaction were performed to assess the interaction between miR-140 and MALAT1 or PD-L1. Results MALAT1 were overexpressed in human LUAD tumor tissues and cell lines, while miR-140 were inhibited. MALAT1 knockdown or miR-140 increase suppressed cell proliferation and promoted cell apoptosis in LUAD after irradiation. LUAD xenograft tumor growth was also inhibited by MALAT1 knockdown combined with irradiation. miR-140 could directly bind with MALAT1 or PD-L1. Furthermore, MALAT1 knockdown inhibited PD-L1 mRNA and protein expressions by upregulating miR-140 in LUAD cells. Conclusion MALAT1 may function as a sponge for miR-140a-3p to enhance the PD-L1 expression and decrease the radiosensitivity of LUAD. Our results suggest that MALAT1 might be a promising therapeutic target for the radiotherapy sensitization of LUAD.
Collapse
Affiliation(s)
- Shujie Li
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yue Xie
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Wei Zhou
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Qian Zhou
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Dan Tao
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Haonan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Kaijin Mao
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Shi Li
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jinyan Lei
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yongzhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
3
|
Stevanovic M, Kovacevic-Grujicic N, Petrovic I, Drakulic D, Milivojevic M, Mojsin M. Crosstalk between SOX Genes and Long Non-Coding RNAs in Glioblastoma. Int J Mol Sci 2023; 24:ijms24076392. [PMID: 37047365 PMCID: PMC10094781 DOI: 10.3390/ijms24076392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma (GBM) continues to be the most devastating primary brain malignancy. Despite significant advancements in understanding basic GBM biology and enormous efforts in developing new therapeutic approaches, the prognosis for most GBM patients remains poor with a median survival time of 15 months. Recently, the interplay between the SOX (SRY-related HMG-box) genes and lncRNAs (long non-coding RNAs) has become the focus of GBM research. Both classes of molecules have an aberrant expression in GBM and play essential roles in tumor initiation, progression, therapy resistance, and recurrence. In GBM, SOX and lncRNAs crosstalk through numerous functional axes, some of which are part of the complex transcriptional and epigenetic regulatory mechanisms. This review provides a systematic summary of current literature data on the complex interplay between SOX genes and lncRNAs and represents an effort to underscore the effects of SOX/lncRNA crosstalk on the malignant properties of GBM cells. Furthermore, we highlight the significance of this crosstalk in searching for new biomarkers and therapeutic approaches in GBM treatment.
Collapse
|
4
|
Perelló-Reus CM, Rubio-Tomás T, Cisneros-Barroso E, Ibargüen-González L, Segura-Sampedro JJ, Morales-Soriano R, Barceló C. Challenges in precision medicine in pancreatic cancer: A focus in cancer stem cells and microbiota. Front Oncol 2022; 12:995357. [PMID: 36531066 PMCID: PMC9751445 DOI: 10.3389/fonc.2022.995357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic cancer adenocarcinoma (PDAC) is a lethal disease, with the lowest 5-years survival rate of all cancers due to late diagnosis. Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in PDAC is currently neglectable. The reasons for this dismal situation are mainly the absence of effective early diagnostic biomarkers and therapy resistance. PDAC cancer stem cells (PDAC-SC), which are regarded as essential for tumor initiation, relapse and drug resistance, are highly dependent on their niche i.e. microanatomical structures of the tumor microenvironment. There is an altered microbiome in PDAC patients embedded within the highly desmoplastic tumor microenvironment, which is known to determine therapeutic responses and affecting survival in PDAC patients. We consider that understanding the communication network that exists between the microbiome and the PDAC-SC niche by co-culture of patient-derived organoids (PDOs) with TME microbiota would recapitulate the complexity of PDAC paving the way towards a precision oncology treatment-response prediction.
Collapse
Affiliation(s)
- Catalina M. Perelló-Reus
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain,*Correspondence: Carles Barceló, ; Catalina M. Perelló-Reus,
| | | | | | - Lesly Ibargüen-González
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain
| | - Juan José Segura-Sampedro
- Advanced Oncological Surgery, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain,General and Digestive Surgery Unit, Hospital Universitari Son Espases, School of Medicine, Balearic Islands Health Research Institute, University of Balearic Islands, Palma de Mallorca, Spain
| | - Rafael Morales-Soriano
- Advanced Oncological Surgery, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain,General and Digestive Surgery Unit, Hospital Universitari Son Espases, School of Medicine, Balearic Islands Health Research Institute, University of Balearic Islands, Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases (HUSE), Palma de Mallorca, Spain,*Correspondence: Carles Barceló, ; Catalina M. Perelló-Reus,
| |
Collapse
|
5
|
Pancreatic Cancer Cells Induce MicroRNA Deregulation in Platelets. Int J Mol Sci 2022; 23:ijms231911438. [PMID: 36232741 PMCID: PMC9569638 DOI: 10.3390/ijms231911438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is a pathology with a high mortality rate since it is detected at advanced stages, so the search for early-stage diagnostic biomarkers is essential. Liquid biopsies are currently being explored for this purpose and educated platelets are a good candidate, since they are known to present a bidirectional interaction with tumor cells. In this work, we analyzed the effects of platelets on cancer cells’ viability, as determined by MTT, migration using transwell assays, clonogenicity in soft agar and stemness by dilution assays and stem markers’ expression. We found that the co-culture of platelets and pancreatic cancer cells increased the proliferation and migration capacity of BXCP3 cells, augmented clonogenicity and induced higher levels of Nanog, Sox2 and Oct4 expression. As platelets can provide horizontal transfer of microRNAs, we also determined the differential expression of miRNAs in platelets obtained from a small cohort of pancreatic cancer patients and healthy subjects. We found clear differences in the expression of several miRNAs between platelets of patients with cancer healthy subjects. Moreover, when we analyzed microRNAs from the platelets of the pancreatic juice and blood derived from each of the cancer patients, interestingly we find differences between the blood- and pancreatic juice-derived platelets suggesting the presence of different subpopulations of platelets in cancer patients, which warrant further analysis.
Collapse
|
6
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Regulation of the Cancer Stem Phenotype by Long Non-Coding RNAs. Cells 2022; 11:cells11152352. [PMID: 35954194 PMCID: PMC9367355 DOI: 10.3390/cells11152352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells are a cell population within malignant tumors that are characterized by the ability to self-renew, the presence of specific molecules that define their identity, the ability to form malignant tumors in vivo, resistance to drugs, and the ability to invade and migrate to other regions of the body. These characteristics are regulated by various molecules, such as lncRNAs, which are transcripts that generally do not code for proteins but regulate multiple biological processes through various mechanisms of action. LncRNAs, such as HOTAIR, H19, LncTCF7, LUCAT1, MALAT1, LINC00511, and FMR1-AS1, have been described as key regulators of stemness in cancer, allowing cancer cells to acquire this phenotype. It has been proposed that cancer stem cells are clinically responsible for the high recurrence rates after treatment and the high frequency of metastasis in malignant tumors, so understanding the mechanisms that regulate the stem phenotype could have an impact on the improvement of cancer treatments.
Collapse
|
8
|
Tian X, Zheng J, Mou W, Lu G, Chen S, Du J, Zheng Y, Chen S, Shen B, Li J, Wang N. Development and validation of a hypoxia-stemness-based prognostic signature in pancreatic adenocarcinoma. Front Pharmacol 2022; 13:939542. [PMID: 35935823 PMCID: PMC9350896 DOI: 10.3389/fphar.2022.939542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is one of the most aggressive and fatal gastrointestinal malignancies with high morbidity and mortality worldwide. Accumulating evidence has revealed the clinical significance of the interaction between the hypoxic microenvironment and cancer stemness in pancreatic cancer progression and therapies. This study aims to identify a hypoxia-stemness index-related gene signature for risk stratification and prognosis prediction in PAAD.Methods: The mRNA expression-based stemness index (mRNAsi) data of PAAD samples from The Cancer Genome Atlas (TCGA) database were calculated based on the one-class logistic regression (OCLR) machine learning algorithm. Univariate Cox regression and LASSO regression analyses were then performed to establish a hypoxia-mRNAsi-related gene signature, and its prognostic performance was verified in both the TCGA-PAAD and GSE62452 corhorts by Kaplan-Meier and receiver operating characteristic (ROC) analyses. Additionally, we further validated the expression levels of signature genes using the TCGA, GTEx and HPA databases as well as qPCR experiments. Moreover, we constructed a prognostic nomogram incorporating the eight-gene signature and traditional clinical factors and analyzed the correlations of the risk score with immune infiltrates and immune checkpoint genes.Results: The mRNAsi values of PAAD samples were significantly higher than those of normal samples (p < 0.001), and PAAD patients with high mRNAsi values exhibited worse overall survival (OS). A novel prognostic risk model was successfully constructed based on the eight-gene signature comprising JMJD6, NDST1, ENO3, LDHA, TES, ANKZF1, CITED, and SIAH2, which could accurately predict the 1-, 3-, and 5-year OS of PAAD patients in both the training and external validation datasets. Additionally, the eight-gene signature could distinguish PAAD samples from normal samples and stratify PAAD patients into low- and high-risk groups with distinct OS. The risk score was closely correlated with immune cell infiltration patterns and immune checkpoint molecules. Moreover, calibration analysis showed the excellent predictive ability of the nomogram incorporating the eight-gene signature and traditional clinical factors.Conclusion: We developed a hypoxia-stemness-related prognostic signature that reliably predicts the OS of PAAD. Our findings may aid in the risk stratification and individual treatment of PAAD patients.
Collapse
Affiliation(s)
- Xiong Tian
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jing Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wanlan Mou
- Department of Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Guoguang Lu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yufen Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shiyong Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Jun Li, ; Na Wang,
| | - Na Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Jun Li, ; Na Wang,
| |
Collapse
|
9
|
The Role of Hypoxia-Associated Long Non-Coding RNAs in Breast Cancer. Cells 2022; 11:cells11101679. [PMID: 35626715 PMCID: PMC9139647 DOI: 10.3390/cells11101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in women worldwide. In the United States, even with earlier diagnosis and treatment improvements, the decline in mortality has stagnated in recent years. More research is needed to provide better diagnostic, prognostic, and therapeutic tools for these patients. Long non-coding RNAs are newly described molecules that have extensive roles in breast cancer. Emerging reports have shown that there is a strong link between these RNAs and the hypoxic response of breast cancer cells, which may be an important factor for enhanced tumoral progression. In this review, we summarize the role of hypoxia-associated lncRNAs in the classic cancer hallmarks, describing their effects on the upstream and downstream hypoxia signaling pathway and the use of them as diagnostic and prognostic tools.
Collapse
|
10
|
Han Y, Zhao G, Shi X, Wang Y, Wen X, Zhang L, Guo X. The Emerging Role of Long Non-Coding RNAs in Esophageal Cancer: Functions in Tumorigenesis and Clinical Implications. Front Pharmacol 2022; 13:885075. [PMID: 35645836 PMCID: PMC9137892 DOI: 10.3389/fphar.2022.885075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common malignancies of digestive tracts with poor five-year survival rate. Hence, it is very significant to further investigate the occurrence and development mechanism of esophageal cancer, find more effective biomarkers and promote early diagnosis and effective treatment. Long non-coding RNAs (lncRNAs) are generally defined as non-protein-coding RNAs with more than 200 nucleotides in length. Existing researches have shown that lncRNAs could act as sponges, guides, scaffolds, and signal molecules to influence the oncogene or tumor suppressor expressions at transcriptional, post-transcriptional, and protein levels in crucial cellular processes. Currently, the dysregulated lncRNAs are reported to involve in the pathogenesis and progression of EC. Importantly, targeting EC-related lncRNAs through genome editing, RNA interference and molecule drugs may be one of the most potential therapeutic methods for the future EC treatment. In this review, we summarized the biological functions and molecular mechanisms of lncRNAs, including oncogenic lncRNAs and tumor suppressor lncRNAs in EC. In addition, we generalized the excellent potential lncRNA candidates for diagnosis, prognosis and therapy in EC. Finally, we discussed the current challenges and opportunities of lncRNAs for EC.
Collapse
Affiliation(s)
- Yali Han
- Departments of Physiology, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xinhang Shi
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yushan Wang
- Departments of Physiology, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Xiangqian Guo,
| |
Collapse
|
11
|
Liu J, Shang G. The Roles of Noncoding RNAs in the Development of Osteosarcoma Stem Cells and Potential Therapeutic Targets. Front Cell Dev Biol 2022; 10:773038. [PMID: 35252166 PMCID: PMC8888953 DOI: 10.3389/fcell.2022.773038] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) is the common bone tumor in children and adolescents. Because of chemotherapy resistance, the OS patients have a poor prognosis. The one reason of chemotherapeutic resistance is the development of cancer stem cells (CSCs). CSCs represent a small portion of tumor cells with the capacity of self-renewal and multipotency, which are associated with tumor initiation, metastasis, recurrence and drug resistance. Recently, noncoding RNAs (ncRNAs) have been reported to critically regulate CSCs. Therefore, in this review article, we described the role of ncRNAs, especially miRNAs, lncRNAs and circRNAs, in regulating CSCs development and potential mechanisms. Specifically, we discussed the role of multiple miRNAs in targeting CSCs, including miR-26a, miR-29b, miR-34a, miR-133a, miR-143, miR-335, miR-382, miR-499a, miR-1247, and let-7days. Moreover, we highlighted the functions of lncRNAs in regulating CSCs in OS, such as B4GALT1-AS1, DANCR, DLX6-AS1, FER1L4, HIF2PUT, LINK-A, MALAT1, SOX2-OT, and THOR. Due to the critical roles of ncRNAs in regulation of OS CSCs, targeting ncRNAs might be a novel strategy for eliminating CSCs for OS therapy.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guanning Shang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|