1
|
Lee MJ, Park K, Yeon Lee S, Jang KH, Won S, Hyunchul Jo C. Effects of Conditioned Media From Human Umbilical Cord-Derived Mesenchymal Stem Cells on Tenocytes From Degenerative Rotator Cuff Tears in an Interleukin 1β-Induced Tendinopathic Condition. Orthop J Sports Med 2024; 12:23259671241286412. [PMID: 39534392 PMCID: PMC11555721 DOI: 10.1177/23259671241286412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background Evidence suggests that mesenchymal stem cells (MSCs) are safe for treating different tendinopathies. Synovial fluid is a pooled environment of biomarkers from the inflammatory and degenerative joint cavity. Understanding the effects of synovial fluid on MSCs is important, as it is the first microenvironment that administered MSCs encounter. Several studies have reported that exposure to osteoarthritic synovial fluid-activated MSCs increased the release of soluble factors; however, the paracrine effects of shoulder synovial fluid-stimulated umbilical cord-derived MSCs (SF-UC-MSCs) on tendinopathy have yet to be investigated. Purpose To assess the effects of the conditioned media from SF-UC-MSCs on tenocytes from degenerative rotator cuff tears in an interleukin-1β (IL-1β)-induced tendinopathic condition. Study Design Controlled laboratory study. Methods UC-MSCs were isolated and cultured from healthy, full-term deliveries by cesarean section. Tenocytes were isolated and cultured from patients with degenerative rotator cuff tears. Conditioned media were obtained from UC-MSCs stimulated with synovial fluid. To evaluate the gene expression of proinflammatory and anti-inflammatory cytokines, enzymes and their inhibitors, matrix molecules, and growth factors, the tenocytes were cultured with IL-1β and 50% of the conditioned media from the SF-UC-MSCs; quantitative, real-time, reverse transcriptase polymerase chain reaction was also performed. A prostaglandin E2 (PGE2) assay was performed to investigate the PGE2 level secreted by the tenocytes. Western blotting was performed to examine protein synthesis of collagen type I and III. Cell viability, senescence, and apoptosis assays were also performed. Results The conditioned media from the SF-UC-MSCs interfered with the inflammatory gene expression on tenocytes induced by IL-1β, but it increased the gene expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3. Meanwhile, the conditioned media decreased the PGE2 level on cells induced by IL-1β. It did increase the type I/III ratio of gene expression and protein synthesis, mainly through the induction of type I collagen. Conditioned media of SF-UC-MSCs reversed senescence and apoptosis induced by IL-1β. Conclusion Study findings indicated that the conditioned media from SF-UC-MSCs had anti-inflammatory effects and cytoprotective effects on IL-1β-treated tenocytes from degenerative rotator cuff tears. Clinical Relevance UC-MSCs have useful potential for the treatment of tendinopathy in practice.
Collapse
Affiliation(s)
- Min Ji Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Seung Yeon Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwi-Hoon Jang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Coomer RPC, Terschuur JA, Pressanto MC, Walker I. Allogeneic chondrogenic-induced mesenchymal stem cells for the treatment of tarsometatarsal lameness in horses. Vet Surg 2024; 53:175-183. [PMID: 37681480 DOI: 10.1111/vsu.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To assess the efficacy of commercial intra-articular blood-derived allogeneic-induced mesenchymal stem cells (CIMSCs) to treat tarsometatarsal lameness in horses. STUDY DESIGN This was a retrospective cohort study. ANIMALS Records from 167 adult light breed horses with bilateral tarsometatarsal lameness. METHODS Horses with tarsometatarsal lameness were retrospectively selected from medical records. Diagnosis followed subjective graded lameness assessment before and after intra-articular analgesia, with graded radiographic tarsal examination. Horses were excluded if they were diagnosed or treated for any other concurrent lameness conditions during the study. Time to last follow-up and time of recurrence of lameness was recorded at veterinary re-assessment. RESULTS A total of 67 horses were recruited to the CIMSC-treated group and 100 to the corticosteroid (CS)-treated group. Median age was 9 years, with no difference in signalment, use or radiographic grade between groups. First re-examination was 38 days (95% CI: 38-49), with no difference between groups, CIMSC 42 (35-45), control 34 (25-42). Median follow-up was 438 days for CIMSC, 546 for controls. Symptoms of lameness recurred in 86/100 controls compared to 17/67 (25%) CIMSC. Median time to lameness recurring in CIMSC was 336 days (95% CI: 239-400), control 90 days (95% CI: 80-108), p < .0001. Cox proportional hazard ratio for treatment was 8.35, 95% CI: 4.67 to 14.92, p < .0001. CONCLUSIONS Lameness was abolished in all treated horses. It recurred significantly less often, and later, in CIMSC-treated horses. CLINICAL SIGNIFICANCE Intra-articular CIMSC treatment results in prolonged soundness in horses with tarsometatarsal lameness.
Collapse
Affiliation(s)
| | | | | | - Ian Walker
- School of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
3
|
Paudel S, Feltham T, Manandhar L, Guo Y, Schon L, Zhang Z. Mild Synovitis Impairs Chondrogenic Joint Environment. Cells Tissues Organs 2023; 213:245-254. [PMID: 37524055 DOI: 10.1159/000532008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023] Open
Abstract
The impact of mild synovitis on the chondrogenic environment in the joint pertaining to cartilage repair is often neglected. In this study, 21 synovial samples were collected from foot surgeries for histology and isolation of fibroblast-like synoviocytes (FLSs). Of the 21 samples, 13 were normal and eight were mild synovitis, according to their synovitis scores. In mild synovitis, CD3+ lymphocytes were increased in the sublining layer. When chondrocytes were cultured and treated with the conditioned medium produced by FLSs, their glycosaminoglycan production was negatively correlated with the synovitis scores of the synovium, from which FLSs were isolated. In conclusion, mild synovitis in common joint conditions compromises the process of chondrogenesis, via inhibiting chondrocyte matrix production by FLSs. The results suggest that the concomitant synovitis, even being mild, could significantly alter the joint environment for chondrogenesis and impair the outcome of cartilage repair.
Collapse
Affiliation(s)
- Sharada Paudel
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tyler Feltham
- Philadelphia College of Osteopathic Medicine-GA, Suwanee, Georgia, USA
| | | | - Yi Guo
- Department of Orthopaedic Surgery, Montefiore Medical Center, Bronx, New York, USA
| | - Lew Schon
- Institute for Foot and Ankle Reconstruction, Mercy Medical Center, Baltimore, Maryland, USA
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA
| | - Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Leal Reis I, Lopes B, Sousa P, Sousa AC, Branquinho M, Caseiro AR, Pedrosa SS, Rêma A, Oliveira C, Porto B, Atayde L, Amorim I, Alvites R, Santos JM, Maurício AC. Allogenic Synovia-Derived Mesenchymal Stem Cells for Treatment of Equine Tendinopathies and Desmopathies-Proof of Concept. Animals (Basel) 2023; 13:ani13081312. [PMID: 37106875 PMCID: PMC10135243 DOI: 10.3390/ani13081312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Tendon and ligament injuries are frequent in sport horses and humans, and such injuries represent a significant therapeutic challenge. Tissue regeneration and function recovery are the paramount goals of tendon and ligament lesion management. Nowadays, several regenerative treatments are being developed, based on the use of stem cell and stem cell-based therapies. In the present study, the preparation of equine synovial membrane mesenchymal stem cells (eSM-MSCs) is described for clinical use, collection, transport, isolation, differentiation, characterization, and application. These cells are fibroblast-like and grow in clusters. They retain osteogenic, chondrogenic, and adipogenic differentiation potential. We present 16 clinical cases of tendonitis and desmitis, treated with allogenic eSM-MSCs and autologous serum, and we also include their evaluation, treatment, and follow-up. The concerns associated with the use of autologous serum as a vehicle are related to a reduced immunogenic response after the administration of this therapeutic combination, as well as the pro-regenerative effects from the growth factors and immunoglobulins that are part of its constitution. Most of the cases (14/16) healed in 30 days and presented good outcomes. Treatment of tendon and ligament lesions with a mixture of eSM-MSCs and autologous serum appears to be a promising clinical option for this category of lesions in equine patients.
Collapse
Affiliation(s)
- Inês Leal Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Jorge Miguel Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Gugjoo MB, Dar ER, Farooq F, Ahmad SM, Sofi AH, Shah SA, Bhat MH, Khan TA, Shah RA, Parrah JUD. Cryopreserved allogeneic bone marrow mesenchymal stem cells show better osteochondral defect repair potential than adipose tissue mesenchymal stem cells. Curr Res Transl Med 2023; 71:103364. [PMID: 36436354 DOI: 10.1016/j.retram.2022.103364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) due to their characteristic properties have a potential to treat osteoarthritis, one of the major growing joint problems. MSCs show differential ex vivo chondrogenic potential on the basis of source that remains to be validated under in vivo environment. This study compared chondrogenic potential of MSCs derived from two common sources, adipose tissue (AD) and bone marrow (BM) under ex vivo and in vivo environments. The randomized placebo controlled osteochondral defect (OCD) study divided n = 72 rabbits equally into Control, AD-MSCs and BM-MSCs groups. Ex vivo chondrogenic induction resulted in an increased aggrecan fold expression in BM-MSCs and AD-MSCs. The former cell type had significantly (p<0.05) higher fold expression as compared to the latter. The cell treated OCDs had significantly reduced gene expression for inflammatory markers (IL-6, IL-8 and TNF-α) as compared to the control. In OCD study, radiography, MRI, gross observation, histopathology and SEM revealed that the cell treated defects were early filled by the tissue that had better surface architecture and matrices as compared to the control. BM-MSCs treated defects had better scores especially for gross and histopathology than the AD-MSCs. Gene expression for osteochondral regulation and cartilaginous matrices was higher in BM-MSCs group while only for matrices including the Col I in AD-MSCs as compared to the control. It was concluded that OCD in the cell treated groups are filled early with mostly a fibrocartilaginous to hyaline tissue. BM-MSCs may have an edge over AD-MSCs in OCD repair.
Collapse
Affiliation(s)
| | - Ejaz Rasool Dar
- Division of Surgery and Radiology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Fajar Farooq
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Asif Hassan Sofi
- Division of Livestock Products and Technology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Showkat Ahmad Shah
- Division of Veterinary Pathology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | | | | | - Riaz Ahmad Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Jalal-Ud-Din Parrah
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| |
Collapse
|
6
|
Brachtl G, Poupardin R, Hochmann S, Raninger A, Jürchott K, Streitz M, Schlickeiser S, Oeller M, Wolf M, Schallmoser K, Volk HD, Geissler S, Strunk D. Batch Effects during Human Bone Marrow Stromal Cell Propagation Prevail Donor Variation and Culture Duration: Impact on Genotype, Phenotype and Function. Cells 2022; 11:946. [PMID: 35326396 PMCID: PMC8946746 DOI: 10.3390/cells11060946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Donor variation is a prominent critical issue limiting the applicability of cell-based therapies. We hypothesized that batch effects during propagation of bone marrow stromal cells (BMSCs) in human platelet lysate (hPL), replacing fetal bovine serum (FBS), can affect phenotypic and functional variability. We therefore investigated the impact of donor variation, hPL- vs. FBS-driven propagation and exhaustive proliferation, on BMSC epigenome, transcriptome, phenotype, coagulation risk and osteochondral regenerative function. Notably, propagation in hPL significantly increased BMSC proliferation, created significantly different gene expression trajectories and distinct surface marker signatures, already after just one passage. We confirmed significantly declining proliferative potential in FBS-expanded BMSC after proliferative challenge. Flow cytometry verified the canonical fibroblastic phenotype in culture-expanded BMSCs. We observed limited effects on DNA methylation, preferentially in FBS-driven cultures, irrespective of culture duration. The clotting risk increased over culture time. Moreover, expansion in xenogenic serum resulted in significant loss of function during 3D cartilage disk formation and significantly increased clotting risk. Superior chondrogenic function under hPL-conditions was maintained over culture. The platelet blood group and isoagglutinins had minor impact on BMSC function. These data demonstrate pronounced batch effects on BMSC transcriptome, phenotype and function due to serum factors, partly outcompeting donor variation after just one culture passage.
Collapse
Affiliation(s)
- Gabriele Brachtl
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Sarah Hochmann
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Anna Raninger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Karsten Jürchott
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
| | - Mathias Streitz
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, 17493 Greifswald, Germany
| | - Stephan Schlickeiser
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
| | - Michaela Oeller
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Martin Wolf
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Hans-Dieter Volk
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Berlin Center for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Sven Geissler
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Berlin Center for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| |
Collapse
|
7
|
Lu V, Tennyson M, Zhang J, Khan W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tendon and Ligament Repair-A Systematic Review of In Vivo Studies. Cells 2021; 10:cells10102553. [PMID: 34685532 PMCID: PMC8533909 DOI: 10.3390/cells10102553] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Tendon and ligament injury poses an increasingly large burden to society. This systematic review explores whether mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can facilitate tendon/ligament repair in vivo. On 26 May 2021, a systematic search was performed on PubMed, Web of Science, Cochrane Library, Embase, to identify all studies that utilised MSC-EVs for tendon/ligament healing. Studies administering EVs isolated from human or animal-derived MSCs into in vivo models of tendon/ligament injury were included. In vitro, ex vivo, and in silico studies were excluded, and studies without a control group were excluded. Out of 383 studies identified, 11 met the inclusion criteria. Data on isolation, the characterisation of MSCs and EVs, and the in vivo findings in in vivo models were extracted. All included studies reported better tendon/ligament repair following MSC-EV treatment, but not all found improvements in every parameter measured. Biomechanics, an important index for tendon/ligament repair, was reported by only eight studies, from which evidence linking biomechanical alterations to functional improvement was weak. Nevertheless, the studies in this review showcased the safety and efficacy of MSC-EV therapy for tendon/ligament healing, by attenuating the initial inflammatory response and accelerating tendon matrix regeneration, providing a basis for potential clinical use in tendon/ligament repair.
Collapse
Affiliation(s)
- Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Maria Tennyson
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - James Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
- Correspondence: ; Tel.: +44-(0)-7791-025554
| |
Collapse
|