1
|
Wan K, Jin Y, Fan R, Xu Q, Li X, Yan H, Wang R. Exploring molecular mechanisms of exercise on metabolic syndrome: a bibliometric and visualization study using CiteSpace. Front Endocrinol (Lausanne) 2024; 15:1408466. [PMID: 39290329 PMCID: PMC11405195 DOI: 10.3389/fendo.2024.1408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To investigate the molecular mechanisms through which exercise influences metabolic syndrome (MS) and identify key research trends and collaborative networks using bibliometric and visualization techniques. Methods We conducted a systematic literature search using the Web of Science Core Collection for articles published from 2014 to 2023. Using CiteSpace, we performed a bibliometric analysis of 562 eligible papers, generating visual knowledge maps to identify prevailing patterns, popular subjects, and emerging trends in the literature. Results The study reveals that exercise mitigates MS by reversing high-fat diet-induced abdominal obesity, reducing lipid accumulation and inflammation, enhancing insulin sensitivity, and improving cardiovascular function. Key molecular pathways include PPAR-γ/CPT-1/MCAD signaling, AMPK activation, and nitric oxide production. The USA leads in research output, with significant contributions from American institutions. Collaboration among researchers is limited, highlighting the need for more extensive and high-quality research initiatives. Conclusions Regular, moderate-to-high-intensity exercise is crucial for managing MS. Exercise activates beneficial molecular pathways, improving metabolic health and cardiovascular function. Future research should focus on expanding collaborations and exploring novel molecular targets to enhance the therapeutic potential of exercise in metabolic syndrome management.
Collapse
Affiliation(s)
- Kang Wan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Physical Education College, Henan Sport University, Zhengzhou, China
| | - Yue Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Ruobing Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qizi Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoshi Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
De la Cruz-Color L, Dominguez-Rosales JA, Maldonado-González M, Ruíz-Madrigal B, Sánchez Muñoz MP, Zaragoza-Guerra VA, Espinoza-Padilla VH, Ruelas-Cinco EDC, Ramírez-Meza SM, Torres Baranda JR, González-Gutiérrez MDR, Hernandez Nazara ZH. Evidence That Peripheral Leptin Resistance in Omental Adipose Tissue and Liver Correlates with MASLD in Humans. Int J Mol Sci 2024; 25:6420. [PMID: 38928125 PMCID: PMC11203746 DOI: 10.3390/ijms25126420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.
Collapse
Affiliation(s)
- Lucia De la Cruz-Color
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47820, C.P., Mexico;
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | - Jose Alfredo Dominguez-Rosales
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | - Montserrat Maldonado-González
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - Bertha Ruíz-Madrigal
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - Martha P. Sánchez Muñoz
- Nuevo Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Unidad de Cirugía Bariátrica y Metabólica, Guadalajara 44340, C.P., Mexico;
| | - Vianney Alejandrina Zaragoza-Guerra
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Guadalajara, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, C.P., Mexico; (V.A.Z.-G.); (M.d.R.G.-G.)
| | - Victor H. Espinoza-Padilla
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | | | - Sandra M. Ramírez-Meza
- Coordinación de la Licenciatura en Nutrición, División de Estudios de la Salud Centro Universitario de los Valles, Universidad de Guadalajara, Ameca Km. 45.5, Ameca 46600, C.P., Mexico;
| | - José R. Torres Baranda
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - María del R. González-Gutiérrez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Guadalajara, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, C.P., Mexico; (V.A.Z.-G.); (M.d.R.G.-G.)
| | - Zamira Helena Hernandez Nazara
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| |
Collapse
|
3
|
Augusto da Costa Teixeira L, Rocha-Vieira E, Aparecida Soares L, Mota de Oliveira F, Aparecida Oliveira Leopoldino A, Netto Parentoni A, Amaral Mendonça V, Cristina Rodrigues Lacerda A. The strong inverse association between plasma concentrations of soluble tumor necrosis factor receptors type 1 with adiponectin/leptin ratio in older women. Cytokine 2024; 176:156512. [PMID: 38281360 DOI: 10.1016/j.cyto.2024.156512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Complex inflammatory crosstalk between muscular and adipose organs during ageing is controlled by adipokines and myokines. The Adiponectin/Leptin ratio (A/L ratio) has proven to be a promising biomarker for identifying insulin sensitivity, cardiovascular risk and adipose tissue inflammation. Although the A/L ratio has been related to inflammatory conditions, its ability to associate with or indicate the behavior of other inflammatory mediators remains unknown. The present study aimed to verify the association between the A/L ratio and a panel of inflammatory biomarkers in community-dwelling older women. The plasmatic concentrations of adiponectin, leptin, resistin, brain-derived neurotrophic factor (BDNF), interferon-gamma (IFN-γ), interleukins 2, 4, 5, 6, 8 and 10, tumour necrosis factor (TNF) and its soluble receptors (sTNF-r) 1 and 2 were evaluated in 71 community-dwelling older women with 75 (±7) years. The A/L ratio was negative and inverse correlated with BNDF (r = -0.29; p = 0.01), IL-8 (r = -0.37; p = 0.001) and sTNFr- 1 (r = -0.98; p < 0.001) levels. A strong and inverse association, with proportional effect, between A/L ratio and sTNFr-1 concentrations was found (Adjusted R2 = 0.22; β = -0.48; p > 0.001). It suggests that the presence of sTNFr-1 causes an inflammatory effect that affect cross-talk between muscle and adipose tissue, contributing to pro-inflammatory imbalance, which may have molecular and functional consequences. In addition, we provide insights into diagnostic biomarkers for inflammation, especially related to muscle wasting and intrinsic capacity in older people.
Collapse
Affiliation(s)
- Leonardo Augusto da Costa Teixeira
- Programa de pós-graduação em ciências da saúde da UFVJM, Brazil; Centro Integrado de Pesquisa e pós-graduação em saúde (CIPq-saúde) da UFVJM, Brazil
| | - Etel Rocha-Vieira
- Programa de pós-graduação em ciências da saúde da UFVJM, Brazil; Centro Integrado de Pesquisa e pós-graduação em saúde (CIPq-saúde) da UFVJM, Brazil; Faculdade de Medicina do campus JK da UFVJM, Brazil
| | - Luana Aparecida Soares
- Centro Integrado de Pesquisa e pós-graduação em saúde (CIPq-saúde) da UFVJM, Brazil; Programa de pós-graduação em Reabilitação e Desempenho Funcional da UFVJM, Brazil
| | | | | | | | - Vanessa Amaral Mendonça
- Programa de pós-graduação em ciências da saúde da UFVJM, Brazil; Centro Integrado de Pesquisa e pós-graduação em saúde (CIPq-saúde) da UFVJM, Brazil; Faculdade de Medicina do campus JK da UFVJM, Brazil; Programa de pós-graduação em Reabilitação e Desempenho Funcional da UFVJM, Brazil; Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de pós-graduação em ciências da saúde da UFVJM, Brazil; Centro Integrado de Pesquisa e pós-graduação em saúde (CIPq-saúde) da UFVJM, Brazil; Faculdade de Medicina do campus JK da UFVJM, Brazil; Programa de pós-graduação em Reabilitação e Desempenho Funcional da UFVJM, Brazil; Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Genchi VA, Palma G, Sorice GP, D'Oria R, Caccioppoli C, Marrano N, Biondi G, Caruso I, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Pharmacological modulation of adaptive thermogenesis: new clues for obesity management? J Endocrinol Invest 2023; 46:2213-2236. [PMID: 37378828 PMCID: PMC10558388 DOI: 10.1007/s40618-023-02125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.
Collapse
Affiliation(s)
- V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G P Sorice
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - R D'Oria
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - C Caccioppoli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - N Marrano
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Biondi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Caruso
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
6
|
Wang X, Guo L, Liu G, Liu T. Leptin Mediates Prostate Stromal Cell Proliferation, Smooth Muscle Contraction, and Mitochondrial Function in Benign Prostate Hyperplasia. Diabetes Metab Syndr Obes 2023; 16:3261-3273. [PMID: 37876983 PMCID: PMC10591609 DOI: 10.2147/dmso.s420258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/13/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Leptin is a metabolic peptide hormone produced by adipocytes, with proven roles in proliferation of prostate cancer cells and of prostate cells in animal models of benign prostatic hyperplasia (BPH). Thus, the role of leptin as a molecular link connecting BPH and lower urinary tract symptoms (LUTS) suggestive of BPH with metabolic symptoms appears feasible but is still unknown. In fact, a connection between metabolic syndrome and BPH is becoming increasingly evident from epidemiologic studies. Key factors of Lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH/LUTS) are increased prostate smooth muscle tone, and prostate enlargement. Here, we examined the effects of leptin on contraction of human prostate smooth muscle and on growth of stromal cells. Methods We performed microarray analysis to identify genes (fold change ≥ 1.5) associated with BPH/LUTS progression, such as those involved in proliferation, apoptosis, and mitochondrial metabolism, in rat prostate tissue (data from GSE129561). We then used electric field stimulation (EFS) to induce frequency-dependent, neurogenic contractions of human prostate strips, which were enhanced by leptin. We also examined the effect of leptin on human prostate stromal cells (WPMY-1) and found increased cell proliferation and viability upon exposure. To explore the underlying mechanism, we conducted mitochondrial stress assay using near-infrared (NIR) fluorescent dye and flow cytometry (FACS) analysis and observed reduced cellular apoptosis and preserved mitochondrial membrane potential (∆ψM) after leptin treatment. Results Microarray analysis reveals that leptin regulates prostate smooth muscle contraction and stromal cell proliferation, shedding new light on its involvement in BPH/LUTS pathogenesis and mitochondrial function. We found that leptin enhanced the proliferation rate of prostate stromal cells relative to the control group (0.67 ± 0.05 vs 0.54 ± 0.08, p-value= 0.024). Moreover, leptin (100 ng/mL) potentiated the frequency-dependent, neurogenic contractions of prostate strips elicited by EFS (p= 0.047 between leptin and control group). We also show that leptin treatment increased the mitochondrial membrane potential of prostate stromal cells and inhibited mitochondrial apoptosis. Discussion Our results indicate that leptin stimulates the contractility and proliferation of smooth muscle and stromal cells in the human prostate, implying a potential role for leptin in exacerbating BPH/LUTS in obese men. Leptin modulation may be a beneficial therapeutic strategy for patients with metabolic syndrome and BPH/LUTS. Further studies are warranted to elucidate the mechanisms and implications of the leptin system in BPH/LUTS.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Linfa Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Guiyong Liu
- Qianjiang Central Hospital of Hubei Province, Qianjiang, People’s Republic of China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Urinary System Diseases, Wuhan, People’s Republic of China
| |
Collapse
|
7
|
Pestel J, Blangero F, Watson J, Pirola L, Eljaafari A. Adipokines in obesity and metabolic-related-diseases. Biochimie 2023; 212:48-59. [PMID: 37068579 DOI: 10.1016/j.biochi.2023.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
The discovery of leptin in the 1990s led to a reconsideration of adipose tissue (AT) as not only a fatty acid storage organ, but also a proper endocrine tissue. AT is indeed capable of secreting bioactive molecules called adipokines for white AT or batokines for brown/beige AT, which allow communication with numerous organs, especially brain, heart, liver, pancreas, and/or the vascular system. Adipokines exert pro or anti-inflammatory activities. An equilibrated balance between these two sets ensures homeostasis of numerous tissues and organs. During the development of obesity, AT remodelling leads to an alteration of its endocrine activity, with increased secretion of pro-inflammatory adipokines relative to the anti-inflammatory ones, as shown in the graphical abstract. Pro-inflammatory adipokines take part in the initiation of local and systemic inflammation during obesity and contribute to comorbidities associated to obesity, as detailed in the present review.
Collapse
Affiliation(s)
- Julien Pestel
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Ferdinand Blangero
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Julia Watson
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Luciano Pirola
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Assia Eljaafari
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France; Hospices Civils de Lyon: 2 quai des Célestins, 69001 Lyon, France.
| |
Collapse
|
8
|
Navalón-Monllor V, Soriano-Romaní L, Silva M, de Las Hazas MCL, Hernando-Quintana N, Suárez Diéguez T, Esteve PM, Nieto JA. Microbiota dysbiosis caused by dietetic patterns as a promoter of Alzheimer's disease through metabolic syndrome mechanisms. Food Funct 2023; 14:7317-7334. [PMID: 37470232 DOI: 10.1039/d3fo01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Microbiota dysbiosis and metabolic syndrome, consequences of a non-adequate diet, generate a feedback pathogenic state implicated in Alzheimer's disease development. The lower production of short chain fatty acids (SCFAs) under dysbiosis status leads to lipid homeostasis deregulation and decreases Angptl4 release and AMPK activation in the adipose tissue, promoting higher lipid storage (adipocyte hypertrophy) and cholesterol levels. Also, low SCFA generation reduces GPR41 and GPR43 receptor activation at the adipose tissue (increasing leptin release and leptin receptor resistance) and intestinal levels, reducing the release of GLP-1 and YPP. Therefore, lower satiety sensation and energy expenditure occur, promoting a weight gaining environment mediated by higher food intake and lipid storage, developing dyslipemia. In this context, higher glucose levels, together with higher free fatty acids in the bloodstream, promote glycolipotoxicity, provoking a reduction in insulin released, insulin receptor resistance, advanced glycation products (AGEs) and type 2 diabetes. Intestinal dysbiosis and low SCFAs reduce bacterial biodiversity, increasing lipopolysaccharide (LPS)-producing bacteria and intestinal barrier permeability. Higher amounts of LPS pass to the bloodstream (endotoxemia), causing a low-grade chronic inflammatory state characterized by higher levels of leptin, IL-1β, IL-6 and TNF-α, together with a reduced release of adiponectin and IL-10. At the brain and neuronal levels, the generated insulin resistance, low-grade chronic inflammation, leptin resistance, AGE production and LPS increase directly impact the secretase enzymes and tau hyperphosphorylation, creating an enabling environment for β-amyloid senile plaque and tau tangled formations and, as a consequence, Alzheimer's initiation, development and maintenance.
Collapse
Affiliation(s)
- Víctor Navalón-Monllor
- Vithas Aguas Vivas Hospital, Carretera Alzira-Tavernes de Valldigna CV-50, Km 12, 46740, Carcaixent, Valencia, Spain
| | - Laura Soriano-Romaní
- Ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980, 15 Paterna, Valencia, Spain.
| | - Mariana Silva
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, 28049 Madrid, Spain
| | | | - Teodoro Suárez Diéguez
- Academic Area of Nutrition, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Abasolo 600, Colonia Centro, Pachuca de Soto, E42000, Hidalgo, Mexico
| | - Pere Morell Esteve
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain
| | - Juan Antonio Nieto
- Ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980, 15 Paterna, Valencia, Spain.
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain
| |
Collapse
|
9
|
Spaziani M, Carlomagno F, Tarantino C, Angelini F, Vincenzi L, Gianfrilli D. New perspectives in functional hypogonadotropic hypogonadism: beyond late onset hypogonadism. Front Endocrinol (Lausanne) 2023; 14:1184530. [PMID: 37455902 PMCID: PMC10344362 DOI: 10.3389/fendo.2023.1184530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Functional hypogonadotropic hypogonadism (FHH) is an increasingly frequent condition, whose pathological mechanisms are not yet fully clarified. The concept of FHH has now completely replaced that of late onset hypogonadism, that only concerned the ageing man. FHH is the result of an impairment of the hypothalamic-pituitary gonadal axis (HPG-A) function, resulting in decreased testosterone concentrations associated with low or inappropriately normal gonadotropin levels and infertility; it can be diagnosed once organic causes of hypogonadism are excluded. The growing occurrence of FHH derives from its association with widespread conditions, such as obesity and diabetes mellitus, but also to the increasing ease and frequency of use of several drugs, such as opioids, glucocorticoids, and sex steroids. Moreover, given the tendency of many subjects to excessive physical activity and drastic reduction in caloric intake, FHH may also be secondary to low energy availability. Finally, the association with HIV infection should not be overlooked. Therefore, there is an important variability in the diseases that can lead to FHH. Despite the heterogeneity of the underlying pathologies, the mechanisms leading to FHH would seem quite similar, with the initial event represented by the impairment at the HPG-A level. Nevertheless, many different biological pathways are involved in the pathogenesis of FHH, therefore the aim of the current paper is to provide an overview of the main relevant mechanisms, through a detailed analysis of the literature, focusing specifically on pathogenesis and clinical, diagnostic and therapeutic aspects.
Collapse
Affiliation(s)
- Matteo Spaziani
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - Francesco Carlomagno
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - Chiara Tarantino
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - Francesco Angelini
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - Ludovica Vincenzi
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - Daniele Gianfrilli
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| |
Collapse
|
10
|
Saadullah Khani N, Cotic M, Wang B, Abidoph R, Mills G, Richards-Belle A, Perry BI, Khandaker GM, Bramon E. Schizophrenia and cardiometabolic abnormalities: A Mendelian randomization study. Front Genet 2023; 14:1150458. [PMID: 37091807 PMCID: PMC10115959 DOI: 10.3389/fgene.2023.1150458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Individuals with a diagnosis of schizophrenia are known to be at high risk of premature mortality due to poor physical health, especially cardiovascular disease, diabetes, and obesity. The reasons for these physical health outcomes within this patient population are complex. Despite well-documented cardiometabolic adverse effects of certain antipsychotic drugs and lifestyle factors, schizophrenia may have an independent effect. Aims: To investigate if there is evidence that schizophrenia is causally related to cardiometabolic traits (blood lipids, anthropometric traits, glycaemic traits, blood pressure) and vice versa using bi-directional two-sample Mendelian randomization (MR) analysis. Methods: We used 185 genetic variants associated with schizophrenia from the latest Psychiatric Genomics Consortium GWAS (n = 130,644) in the forward analysis (schizophrenia to cardiometabolic traits) and genetic variants associated with the cardiometabolic traits from various consortia in the reverse analysis (cardiometabolic traits to schizophrenia), both at genome-wide significance (5 × 10-8). The primary method was inverse-variance weighted MR, supported by supplementary methods such as MR-Egger, as well as median and mode-based methods. Results: In the forward analysis, schizophrenia was associated with slightly higher low-density lipoprotein (LDL) cholesterol levels (0.013 SD change in LDL per log odds increase in schizophrenia risk, 95% CI, 0.001-0.024 SD; p = 0.027) and total cholesterol levels (0.013 SD change in total cholesterol per log odds increase in schizophrenia risk, 95% CI, 0.002-0.025 SD; p = 0.023). However, these associations did not survive multiple testing corrections. There was no evidence of a causal effect of cardiometabolic traits on schizophrenia in the reverse analysis. Discussion: Dyslipidemia and obesity in schizophrenia patients are unlikely to be driven primarily by schizophrenia itself. Therefore, lifestyle, diet, antipsychotic drugs side effects, as well as shared mechanisms for metabolic dysfunction and schizophrenia such as low-grade systemic inflammation could be possible reasons for the apparent increased risk of metabolic disease in people with schizophrenia. Further research is needed to examine the shared immune mechanism hypothesis.
Collapse
Affiliation(s)
- Noushin Saadullah Khani
- Division of Psychiatry, Mental Health Neuroscience Department, University College London, London, United Kingdom
| | - Marius Cotic
- Division of Psychiatry, Mental Health Neuroscience Department, University College London, London, United Kingdom
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Baihan Wang
- Division of Psychiatry, Mental Health Neuroscience Department, University College London, London, United Kingdom
| | - Rosemary Abidoph
- Division of Psychiatry, Mental Health Neuroscience Department, University College London, London, United Kingdom
- Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Georgina Mills
- Division of Psychiatry, Mental Health Neuroscience Department, University College London, London, United Kingdom
| | - Alvin Richards-Belle
- Division of Psychiatry, Mental Health Neuroscience Department, University College London, London, United Kingdom
- Division of Psychiatry, Epidemiology and Applied Clinical Research Department, University College London, London, United Kingdom
| | - Benjamin I. Perry
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Centre, Bristol, United Kingdom
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, United Kingdom
| | - Elvira Bramon
- Division of Psychiatry, Mental Health Neuroscience Department, University College London, London, United Kingdom
- Camden and Islington NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Villanueva-Carmona T, Cedó L, Madeira A, Ceperuelo-Mallafré V, Rodríguez-Peña MM, Núñez-Roa C, Maymó-Masip E, Repollés-de-Dalmau M, Badia J, Keiran N, Mirasierra M, Pimenta-Lopes C, Sabadell-Basallote J, Bosch R, Caubet L, Escolà-Gil JC, Fernández-Real JM, Vilarrasa N, Ventura F, Vallejo M, Vendrell J, Fernández-Veledo S. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab 2023; 35:601-619.e10. [PMID: 36977414 DOI: 10.1016/j.cmet.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.
Collapse
Affiliation(s)
- Teresa Villanueva-Carmona
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Lídia Cedó
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Madeira
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - M-Mar Rodríguez-Peña
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Elsa Maymó-Masip
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria Repollés-de-Dalmau
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Joan Badia
- Institut d'Oncologia de la Catalunya Sud, Hospital Universitari Sant Joan de Reus, IISPV, Reus 43204, Spain
| | - Noelia Keiran
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mercedes Mirasierra
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Joan Sabadell-Basallote
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ramón Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta, IISPV, Tortosa 43500, Spain
| | - Laura Caubet
- General and Digestive Surgery Service, Hospital Sant Pau i Santa Tecla, Institut d'Investigació Sanitària Pere Virgili, Tarragona 43003, Spain
| | - Joan Carles Escolà-Gil
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona 08041, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Salt 17190, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona 17004, Spain
| | - Nuria Vilarrasa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Bellvitge - IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mario Vallejo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
12
|
Moar K, Pant A, Saini V, Maurya PK. Potential biomarkers in endometrial cancer: a narrative review. Biomarkers 2023:1-14. [PMID: 36755526 DOI: 10.1080/1354750x.2023.2179114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CONTEXT Every year, approximately 0.4 million women suffer from endometrial cancer (EC) worldwide and it has become the most common gynecological malignancy. Almost 66% of EC cases are diagnosed at an early stage and can be cured by performing surgery while those at an advanced stage turns out to be fatal. Biomarkers of endometrial cancer would be very valuable for screening of women who are at high risk and in detecting the chance of recurrence of disease. OBJECTIVE The current article has reviewed studies published on expression of biomarkers and susceptibility to EC. METHODS Google Scholar and PubMed were used as searching platforms and we have majorly considered the literature from last 10 years. RESULTS Potential biomarkers of EC identified from various studies were summarised.
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| | - Vikas Saini
- Biomedical Sciences, Department of Vocational Studies and Skill Development, Central University of Haryana, Mahendragarh, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
13
|
Guevara-Ramírez P, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Simancas-Racines D, Zambrano AK. Genetics, genomics, and diet interactions in obesity in the Latin American environment. Front Nutr 2022; 9:1063286. [PMID: 36532520 PMCID: PMC9751379 DOI: 10.3389/fnut.2022.1063286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 08/25/2023] Open
Abstract
Obesity is a chronic disease characterized by abnormal or excessive fat accumulation that could impact an individual's health; moreover, the World Health Organization (WHO) has declared obesity a global epidemic since 1997. In Latin America, in 2016, reports indicated that 24.2% of the adult population was obese. The environmental factor or specific behaviors like dietary intake or physical activity have a vital role in the development of a condition like obesity, but the interaction of genes could contribute to that predisposition. Hence, it is vital to understand the relationship between genes and disease. Indeed, genetics in nutrition studies the genetic variations and their effect on dietary response; while genomics in nutrition studies the role of nutrients in gene expression. The present review represents a compendium of the dietary behaviors in the Latin American environment and the interactions of genes with their single nucleotide polymorphisms (SNPs) associated with obesity, including the risk allele frequencies in the Latin American population. Additionally, a bibliographical selection of several studies has been included; these studies examined the impact that dietary patterns in Latin American environments have on the expression of numerous genes involved in obesity-associated metabolic pathways.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
14
|
Derkach KV, Sorokoumov VN, Bakhtyukov AA, Bondareva VM, Shpakov AO. Insulin and Leptin Levels in Blood and Brain Structures of Rats with Diet-Induced Obesity and the Effect of Various Drugs on Them. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Liu X, Yu Z, Zhou HH, Feng Y, Bu Y, Zhai D, Zhang G, Ding S, Wang E, Mi Y, Wan Z. Effect of flavonoid intake on circulating levels of adiponectin and leptin: A systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res 2022; 36:4139-4154. [PMID: 36117321 DOI: 10.1002/ptr.7617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/09/2022]
Abstract
This meta-analysis of randomized controlled trials (RCTs) was conducted to explore the effects of flavonoid intake on adiponectin and leptin levels. The PubMed, EMBASE, and Cochrane Library databases were searched on March 1, 2021. Random-effects, subgroup, sensitivity, and meta-regression analyses were conducted on 40 publications. Flavonoid intake significantly increased circulating adiponectin (0.54 μg/ml, 95% CI [0.20, 0.88], p = .002; I2 = 86.4%) and significantly reduced leptin levels (weighted mean difference: -0.79 ng/ml, 95% CI [-1.33, -0.25], p = .004; I2 = 87.7%). Subgroup analysis demonstrated that flavonoid intervention produced a significant elevation in adiponectin levels only in studies that lasted more than 12 weeks, conducted in Asian regions, were parallel-designed, involved obese or overweight participants and participants with type 2 diabetes mellitus (T2DM) or cardiovascular diseases, used tea catechins, and used a dietary supplement intervention. A significantly negative effect on leptin levels was observed in studies conducted in Asian countries, with healthy participants and participants with T2DM, used whole food interventions, and involved participants with lower baseline leptin levels. In conclusion, flavonoid intake significantly increased circulating adiponectin and decreased leptin levels; however, study heterogeneity was very high. Future well-designed trials are required to address heterogeneous study designs and clarify the efficacy of plants in regulating adiponectin and leptin levels.
Collapse
Affiliation(s)
- Xinxin Liu
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huan-Huan Zhou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yang Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Bu
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Desheng Zhai
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Guofu Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Shibin Ding
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Erhui Wang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yang Mi
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxiao Wan
- College of Public Health, Zhengzhou University, Zhengzhou, China.,School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Adipose Tissue Dysfunction and Obesity-Related Male Hypogonadism. Int J Mol Sci 2022; 23:ijms23158194. [PMID: 35897769 PMCID: PMC9330735 DOI: 10.3390/ijms23158194] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic illness associated with several metabolic derangements and comorbidities (i.e., insulin resistance, leptin resistance, diabetes, etc.) and often leads to impaired testicular function and male subfertility. Several mechanisms may indeed negatively affect the hypothalamic–pituitary–gonadal health, such as higher testosterone conversion to estradiol by aromatase activity in the adipose tissue, increased ROS production, and the release of several endocrine molecules affecting the hypothalamus–pituitary–testis axis by both direct and indirect mechanisms. In addition, androgen deficiency could further accelerate adipose tissue expansion and therefore exacerbate obesity, which in turn enhances hypogonadism, thus inducing a vicious cycle. Based on these considerations, we propose an overview on the relationship of adipose tissue dysfunction and male hypogonadism, highlighting the main biological pathways involved and the current therapeutic options to counteract this condition.
Collapse
|
18
|
Palma G, Sorice GP, Genchi VA, Giordano F, Caccioppoli C, D’Oria R, Marrano N, Biondi G, Giorgino F, Perrini S. Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. Int J Mol Sci 2022; 23:ijms23137349. [PMID: 35806353 PMCID: PMC9267094 DOI: 10.3390/ijms23137349] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a chronic disease caused by an excess of adipose tissue that may impair health by altering the functionality of various organs, including the lungs. Excessive deposition of fat in the abdominal area can lead to abnormal positioning of the diaphragm and consequent reduction in lung volume, leading to a heightened demand for ventilation and increased exposure to respiratory diseases, such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnoea. In addition to mechanical ventilatory constraints, excess fat and ectopic deposition in visceral depots can lead to adipose tissue dysfunction, which promotes metabolic disorders. An altered adipokine-secretion profile from dysfunctional adipose tissue in morbid obesity fosters systemic, low-grade inflammation, impairing pulmonary immune response and promoting airway hyperresponsiveness. A potential target of these adipokines could be the NLRP3 inflammasome, a critical component of the innate immune system, the harmful pro-inflammatory effect of which affects both adipose and lung tissue in obesity. In this review, we will investigate the crosstalk between adipose tissue and the lung in obesity, highlighting the main inflammatory mediators and novel therapeutic targets in preventing pulmonary dysfunction.
Collapse
|
19
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
20
|
Alfarhan MW, Al-Hussaini H, Kilarkaje N. Role of PPAR-γ in diabetes-induced testicular dysfunction, oxidative DNA damage and repair in leptin receptor-deficient obese type 2 diabetic mice. Chem Biol Interact 2022; 361:109958. [PMID: 35472412 DOI: 10.1016/j.cbi.2022.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
The testis expresses peroxisome proliferator-activated receptor-γ (PPAR-γ), but its involvement in regulating diabetes-induced testicular dysfunction and DNA damage repair is not known. Pioglitazone-induced activation of PPAR-γ for 12 weeks in db/db obese diabetic mice increases bodyweights and reduces blood glucose levels, but PPAR-γ inhibition by 2-chloro-5-nitro-N-phenylbenzamide does not alter these parameters; instead, improves testis and epididymis weights and sperm count. Neither activation nor inhibition of PPAR-γ normalizes the diabetes-induced seminiferous epithelial degeneration. The PPAR-γ activation normalizes testicular lipid peroxidation, but its inhibition reduces lipid peroxidation and oxidative DNA damage (8-oxo-dG) in diabetic mice. As a response to diabetes-induced oxidative DNA damage, the base-excision repair (BER) mechanism proteins- 8-oxoguanine DNA glycosylases (OGG1/2) and X-ray repair cross-complementing protein-1 (XRCC1) increase, whereas the redox-factor-1 (REF1), DNA polymerase (pol) δ and poly (ADP-ribose) polymerase-1 (PARP1) show a tendency to increase suggesting an attempt to repair the oxidative DNA damage. The PPAR-γ stimulation inhibits OGG2, DNA pol δ, and XRCC1 in diabetic mice testes, but PPAR-γ inhibition reduces oxidative DNA damage and normalizes BER protein levels. In conclusion, type 2 diabetes negatively affects testicular structure and function and increases oxidative DNA damage and BER protein levels due to increased DNA damage. The PPAR-γ modulation does not significantly affect the structural changes in the testis. The PPAR-γ stimulation aggravates diabetes-induced effects on testis, including oxidative DNA damage and BER proteins, but PPAR-γ inhibition marginally recovers these diabetic effects indicating the involvement of the receptor in the reproductive effects of diabetes.
Collapse
Affiliation(s)
| | - Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
21
|
Leptin Protein Expression and Promoter Methylation in Ovarian Cancer: A Strong Prognostic Value with Theranostic Promises. Int J Mol Sci 2021; 22:ijms222312872. [PMID: 34884678 PMCID: PMC8657586 DOI: 10.3390/ijms222312872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is the deadliest among all gynecological cancers. Epidemiological studies showed that obesity might influence many cancers including OC. One of the key factors that may link obesity and OC is leptin (LEP), known as an adipokine with pleiotropic effects on body homeostasis. This study aims to investigate the expression pattern of LEP, assess the methylation profiles of LEP and their associations with clinicopathological features including survival outcomes of OC patients. The protein expression of LEP was evaluated in 208 samples using both tissue microarray and immunohistochemistry techniques. The methylation profiles of LEP were measured in 63 formalin-fixed, paraffin-embedded tumor tissues by quantitative polymerase chain reaction using a MethyLight assay. Our results showed a significant association of LEP protein overexpression with several clinicopathological variables, mainly tumor subtype, LVI, age of menarche, tumor size and stage (p < 0.04). Kaplan-Meier analysis (using low expression versus high expression as a discriminator) indicated that LEP protein overexpression is a powerful positive prognosticator of both OC recurrence (DFS) and disease-specific survival (DSS) in our OC cohort (log-rank p = 0.01 and p = 0.002, respectively). This implies that patients with high LEP expression profiles live longer with less recurrence rates. Methylation analysis results demonstrated a clear association between no/low LEP protein expression pattern (38%) and LEP promoter CpG island hypermethylation (43%). Results of this study suggest that LEP is a powerful prognosticator of OC recurrence and DSS. LEP expression in OC seems to be regulated by its promoter hypermethylation through gene partial/total silencing. Further multi-institutional studies using larger cohorts are required to demystify the intricate molecular functions of this leptin-driven effects in OC pathophysiology and to accurately assess its theranostic potential and validate its prognostic/predictive power in OC onset, progression towards more effective and personalized management of OC patients.
Collapse
|