1
|
Shen H, Yang J, Chen X, Gao Y, He B. Role of hypoxia-inducible factor in postoperative delirium of aged patients: A review. Medicine (Baltimore) 2023; 102:e35441. [PMID: 37773821 PMCID: PMC10545271 DOI: 10.1097/md.0000000000035441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Postoperative delirium is common, especially in older patients. Delirium is associated with prolonged hospitalization, an increased risk of postoperative complications, and significant mortality. The mechanism of postoperative delirium is not yet clear. Cerebral desaturation occurred during the maintenance period of general anesthesia and was one of the independent risk factors for postoperative delirium, especially in the elderly. Hypoxia stimulates the expression of hypoxia-inducible factor-1 (HIF-1), which controls the hypoxic response. HIF-1 may have a protective role in regulating neuron apoptosis in neonatal hypoxia-ischemia brain damage and may promote the repair and rebuilding process in the brain that was damaged by hypoxia and ischemia. HIF-1 has a neuroprotective effect during cerebral hypoxia and controls the hypoxic response by regulating multiple pathways, such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. On the other hand, anesthetics have been reported to inhibit HIF activity in older patients. So, we speculate that HIF plays an important role in the pathophysiology of postoperative delirium in the elderly. The activity of HIF is reduced by anesthetics, leading to the inhibition of brain protection in a hypoxic state. This review summarizes the possible mechanism of HIF participating in postoperative delirium in elderly patients and provides ideas for finding targets to prevent or treat postoperative delirium in elderly patients.
Collapse
Affiliation(s)
- Hu Shen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyin Yang
- Department of ICU, Chengdu Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Xu Chen
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Jia N, Shen Z, Zhao S, Wang Y, Pei C, Huang D, Wang X, Wu Y, Shi S, He Y, Wang Z. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr.etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway. Int Immunopharmacol 2023; 121:110423. [PMID: 37331291 DOI: 10.1016/j.intimp.2023.110423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Eleutheroside E, a major natural bioactive compound in Acanthopanax senticosus (Rupr.etMaxim.) Harms, possesses anti-oxidative, anti-fatigue, anti-inflammatory, anti-bacterial and immunoregulatory effects. High-altitude hypobaric hypoxia affects blood flow and oxygen utilisation, resulting in severe heart injury that cannot be reversed, thereby eventually causing or exacerbating high-altitude heart disease and heart failure. The purpose of this study was to determine the cardioprotective effects of eleutheroside E against high-altitude-induced heart injury (HAHI), and to study the mechanisms by which this happens. A hypobaric hypoxia chamber was used in the study to simulate hypobaric hypoxia at the high altitude of 6000 m. 42 male rats were randomly assigned to 6 equal groups and pre-treated with saline, eleutheroside E 100 mg/kg, eleutheroside E 50 mg/kg, or nigericin 4 mg/kg. Eleutheroside E exhibited significant dose-dependent effects on a rat model of HAHI by suppressing inflammation and pyroptosis. Eleutheroside E downregulated the expressions of brain natriuretic peptide (BNP), creatine kinase isoenzymes (CK-MB) and lactic dehydrogenase (LDH). Moreover, The ECG also showed eleutheroside E improved the changes in QT interval, corrected QT interval, QRS interval and heart rate. Eleutheroside E remarkably suppressed the expressions of NLRP3/caspase-1-related proteins and pro-inflammatory factors in heart tissue of the model rats. Nigericin, known as an agonist of NLRP3 inflammasome-mediated pyroptosis, reversed the effects of eleutheroside E. Eleutheroside E prevented HAHI and inhibited inflammation and pyroptosis via the NLRP3/caspase-1 signalling pathway. Taken together, eleutheroside E is a prospective, effective, safe and inexpensive agent that can be used to treat HAHI.
Collapse
Affiliation(s)
- Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
3
|
Khan MA, Khan ZA, Shoeb F, Fatima G, Khan RH, Khan MM. Role of de novo lipogenesis in inflammation and insulin resistance in alzheimer's disease. Int J Biol Macromol 2023; 242:124859. [PMID: 37187418 DOI: 10.1016/j.ijbiomac.2023.124859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Patients with Alzheimer's disease (AD) display both peripheral tissue and brain insulin resistance, the later could be a potential risk factor for cognitive dysfunction. While certain degree of inflammation is required for inducing insulin resistance, underlying mechanism(s) remains unclear. Evidence from diverse research domains suggest that elevated intracellular fatty acids of de novo pathway can induce insulin resistance even without triggering inflammation; however, the effect of saturated fatty acids (SFAs) could be detrimental due the development of proinflammatory cues. In this context, evidence suggest that while lipid/fatty acid accumulation is a characteristic feature of brain pathology in AD, dysregulated de novo lipogenesis could be a potential source for lipid/fatty acid accumulation. Therefore, therapies aimed at regulating de novo lipogenesis could be effective in improving insulin sensitivity and cognitive function in patients with AD.
Collapse
Affiliation(s)
- Mohsin Ali Khan
- Research and Development Unit, Era's Lucknow Medical College and Hospital, Aligarh, UP, India
| | - Zaw Ali Khan
- Research and Development Unit, Era's Lucknow Medical College and Hospital, Aligarh, UP, India
| | - Fouzia Shoeb
- Department of Personalized and Molecular Medicine, Aligarh, UP, India
| | - Ghizal Fatima
- Laboratory of Chronobiology, Department of Biotechnology, Aligarh, UP, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Faculty of Life sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Mohammad M Khan
- Laboratory of Chronobiology, Department of Biotechnology, Aligarh, UP, India; Laboratory of Translational Neurology and Molecular Psychiatry, Era's Lucknow Medical College and Hospital, Faculty of Science, Era University, Sarfarazganj, Lucknow, UP, India.
| |
Collapse
|
4
|
Li J, Yang Z, Yan J, Zhang K, Ning X, Wang T, Ji J, Zhang G, Yin S, Zhao C. Multi-omics analysis revealed the brain dysfunction induced by energy metabolism in Pelteobagrus vachelli under hypoxia stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114749. [PMID: 36907096 DOI: 10.1016/j.ecoenv.2023.114749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Hypoxia in water environment has become increasingly frequent and serious due to global warming and environmental pollution. Revealing the molecular mechanism of fish hypoxia adaptation will help to develop markers of environmental pollution caused by hypoxia. Here, we used a multi-omics method to identify the hypoxia-associated mRNA, miRNA, protein, and metabolite involved in various biological processes in Pelteobagrus vachelli brain. The results showed that hypoxia stress caused brain dysfunction by inhibiting energy metabolism. Specifically, the biological processes involved in energy synthesis and energy consumption are inhibited in P. vachelli brain under hypoxia, such as oxidative phosphorylation, carbohydrate metabolism and protein metabolism. Brain dysfunction is mainly manifested as blood-brain barrier injury accompanied by neurodegenerative diseases and autoimmune diseases. In addition, compared with previous studies, we found that P. vachelli has tissue specificity in response to hypoxia stress and the muscle suffers more damage than the brain. This is the first report to the integrated analysis of the transcriptome, miRNAome, proteome, and metabolome in fish brain. Our findings could provide insights into the molecular mechanisms of hypoxia, and the approach could also be applied to other fish species. DATA AVAILABILITY: The raw data of transcriptome has been uploaded to NCBI database (ID: SUB7714154 and SUB7765255). The raw data of proteome has been uploaded to ProteomeXchange database (PXD020425). The raw data of metabolome has been uploaded to Metabolight (ID: MTBLS1888).
Collapse
Affiliation(s)
- Jie Li
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Zhiru Yang
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jie Yan
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Kai Zhang
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Jie Ji
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Guosong Zhang
- Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze 274015, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| | - Cheng Zhao
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| |
Collapse
|
5
|
Zhang W, Han B, Zhang H, Fu R, Lu Y, Zhang G. Integrated transcriptomic and metabolomic analysis of cortical neurons reveals dysregulated lipid metabolism, enhanced glycolysis and activated HIF-1 signaling pathways in acute hypoxia. Heliyon 2023; 9:e14949. [PMID: 37025787 PMCID: PMC10070144 DOI: 10.1016/j.heliyon.2023.e14949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The brain is the main oxygen-consuming organ and is vulnerable to ischemic shock or insufficient blood perfusion. Brain hypoxia has a persistent and detrimental effect on resident neurons. Previous studies have identified alterations in genes and metabolites in ischemic brain shock by single omics, but the adaptive systems that neurons use to cope with hypoxia remain uncovered. In the present study, we constructed an acute hypoxia model and performed a multi-omics analysis from RNA-sequencing and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics on exploring potentially differentially expressed genes (DEGs) and metabolites (DEMs) in primary cortical neurons under severe acute hypoxic conditions. The TUNEL assay showed acute hypoxia-induced apoptosis in cortical neurons. Omics analysis identified 564 DEGs and 46 DEMs categorized in the Kyoto encyclopedia of genes and genomes (KEGG) database. Integrative pathway analysis highlighted that dysregulated lipid metabolism, enhanced glycolysis, and activated HIF-1 signaling pathways could regulate neuron physiology and pathophysiology under hypoxia. These findings may help us understand the transcriptional and metabolic mechanisms by which cortical neurons respond to hypoxia and identify potential targets for neuron protection.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Bo Han
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Huijun Zhang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Rao Fu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yinzhong Lu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Corresponding author. Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Rd 720, Shanghai 200336, China.
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Corresponding author. Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Rd 1111, Shanghai 200336, China.
| |
Collapse
|
6
|
Le WD, Yang C, Yang Q, Xiang Y, Zeng XR, Xiao J. The neuroprotective effects of oxygen therapy in Alzheimer’s disease: a narrative review. Neural Regen Res 2023. [PMID: 35799509 PMCID: PMC9241400 DOI: 10.4103/1673-5374.343897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative neurological disease that primarily affects the elderly. Drug therapy is the main strategy for AD treatment, but current treatments suffer from poor efficacy and a number of side effects. Non-drug therapy is attracting more attention and may be a better strategy for treatment of AD. Hypoxia is one of the important factors that contribute to the pathogenesis of AD. Multiple cellular processes synergistically promote hypoxia, including aging, hypertension, diabetes, hypoxia/obstructive sleep apnea, obesity, and traumatic brain injury. Increasing evidence has shown that hypoxia may affect multiple pathological aspects of AD, such as amyloid-beta metabolism, tau phosphorylation, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum stress, and mitochondrial and synaptic dysfunction. Treatments targeting hypoxia may delay or mitigate the progression of AD. Numerous studies have shown that oxygen therapy could improve the risk factors and clinical symptoms of AD. Increasing evidence also suggests that oxygen therapy may improve many pathological aspects of AD including amyloid-beta metabolism, tau phosphorylation, neuroinflammation, neuronal apoptosis, oxidative stress, neurotrophic factors, mitochondrial function, cerebral blood volume, and protein synthesis. In this review, we summarized the effects of oxygen therapy on AD pathogenesis and the mechanisms underlying these alterations. We expect that this review can benefit future clinical applications and therapy strategies on oxygen therapy for AD.
Collapse
|
7
|
Liu Y, Qiao H, Du W, Xu L, Yuan F, Lin J, Li M, Zhu L, Li S, Zhang J. Hypoxic White Matter Injury and Recovery After Reoxygenation in Adult Mice: Magnetic Resonance Imaging Findings and Histological Studies. Cell Mol Neurobiol 2022:10.1007/s10571-022-01305-5. [DOI: 10.1007/s10571-022-01305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
|
8
|
Zhang Y, Lu Y, El Sayyed H, Bian J, Lin J, Li X. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. PLANT PHYSIOLOGY 2022; 189:23-36. [PMID: 35134239 PMCID: PMC9070795 DOI: 10.1093/plphys/kiac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biochemical and genetic approaches have been extensively used to study transcription factor (TF) functions, but their dynamic behaviors and the complex ways in which they regulate transcription in plant cells remain unexplored, particularly behaviors such as translocation and binding to DNA. Recent developments in labeling and imaging techniques provide the necessary sensitivity and resolution to study these behaviors in living cells. In this review, we present an up-to-date portrait of the dynamics and regulation of TFs under physiologically relevant conditions and then summarize recent advances in fluorescent labeling strategies and imaging techniques. We then discuss future prospects and challenges associated with the application of these techniques to examine TFs' intricate dance in living plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
9
|
Cui N, Li H, Dun Y, Ripley-Gonzalez JW, You B, Li D, Liu Y, Qiu L, Li C, Liu S. Exercise inhibits JNK pathway activation and lipotoxicity via macrophage migration inhibitory factor in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2022; 13:961231. [PMID: 36147562 PMCID: PMC9485555 DOI: 10.3389/fendo.2022.961231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
The macrophage migration inhibitory factor (MIF) expressed in hepatocytes can limit steatosis during obesity. Lipotoxicity in nonalcoholic fatty liver disease is mediated in part by the activation of the stress kinase JNK, but whether MIF modulates JNK in lipotoxicity is unknown. In this study, we investigated the role of MIF in regulating JNK activation and high-fat fostered liver lipotoxicity during simultaneous exercise treatment. Fifteen mice were equally divided into three groups: normal diet, high-fat diet, and high-fat and exercise groups. High-fat feeding for extended periods elicited evident hyperlipemia, liver steatosis, and cell apoptosis in mice, with inhibited MIF and activated downstream MAPK kinase 4 phosphorylation and JNK. These effects were then reversed following prescribed swimming exercise, indicating that the advent of exercise could prevent liver lipotoxicity induced by lipid overload and might correlate to the action of modulating MIF and its downstream JNK pathway. Similar detrimental effects of lipotoxicity were observed in in vitro HepG2 cells palmitic acid treatment. Suppressed JNK reduced the hepatocyte lipotoxicity by regulating the BCL family, and the excess JNK activation could also be attenuated through MIF supplementation or exacerbated by MIF siRNA administration. The results found suggest that exercise reduces lipotoxicity and inhibits JNK activation by modulating endogenous hepatic MIF in NAFLD. These findings have clinical implications for the prevention and intervention of patients with immoderate diet evoked NAFLD.
Collapse
Affiliation(s)
- Ni Cui
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Hui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey W. Ripley-Gonzalez
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Dezhao Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Cui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Suixin Liu,
| |
Collapse
|