1
|
Yus C, Alejo T, Quílez C, Irusta S, Velasco D, Arruebo M, Sebastian V. Development of a hybrid CuS-ICG polymeric photosensitive vector and its application in antibacterial photodynamic therapy. Int J Pharm 2024; 667:124951. [PMID: 39547474 DOI: 10.1016/j.ijpharm.2024.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
At the present time, owing to the extremely high growth of microbial resistance to antibiotics and, consequently, the increased healthcare associated costs and the loss of efficacy of current treatments, the development of new therapies against bacteria is of paramount importance. For this reason, in this work, a hybrid synergetic nanovector has been developed, based on the encapsulation of a NIR (near infrared) photosensitive molecule (indocyanine green, ICG) in biodegradable polymeric nanoparticles (NPs). In addition, copper sulfide nanoparticles (CuS NPs), optically sensitive to NIR, were anchored on the polymeric nanoparticle shell in order to boost the generation of reactive oxygen species (ROS) upon NIR irradiation. As a result, the nanohybrid synthesized material is capable to generate ROS on demand when exposed to a NIR laser (808 nm) allowing for the repeated triggering of ROS production upon NIR light exposure. After each irradiation, the ROS generated were able to eliminate pathogenic bacteria, as it was demonstrated in-vitro with three bacterial strains, Staphylococcus aureus ATCC 25923 used as a reference strain (S. aureus), S. aureus USA300 (methicillin-resistantstrain, MRSA) and GFP-expressing antibiotic-sensitive S. aureus (methicillin-sensitive strain, MSSA). Finally, the effect of the hybrid NPs in the skin bed was tested on a plasma-derived in vitro skin model. Fluorescence and histological images showed the presence of CuS NPs all over the dermal layer lacking epidermis of the skin construct. Thus, the in vitro model facilitated the prediction of the nanovector's behavior in a human skin equivalent, showcasing its potential application against topical infections after wounding.
Collapse
Affiliation(s)
- Cristina Yus
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain.
| | - Teresa Alejo
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Cristina Quílez
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés 28911, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid 28040, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés 28911, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Victor Sebastian
- Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| |
Collapse
|
2
|
Sierra-Sánchez Á, Cabañas-Penagos J, Igual-Roger S, Martínez-Heredia L, Espinosa-Ibáñez O, Sanabria-de la Torre R, Quiñones-Vico MI, Ubago-Rodríguez A, Lizana-Moreno A, Fernández-González A, Guerrero-Calvo J, Fernández-Porcel N, Ramírez-Muñoz A, Arias-Santiago S. Biological properties and characterization of several variations of a clinical human plasma-based skin substitute model and its manufacturing process. Regen Biomater 2024; 11:rbae115. [PMID: 39469583 PMCID: PMC11513639 DOI: 10.1093/rb/rbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Human plasma is a natural biomaterial that due to their protein composition is widely used for the development of clinical products, especially in the field of dermatology. In this context, this biomaterial has been used as a scaffold alone or combined with others for the development of cellular human plasma-based skin substitutes (HPSSs). Herein, the biological properties (cell viability, cell metabolic activity, protein secretion profile and histology) of several variations of a clinical HPSS model, regarding the biomaterial composition (alone or combined with six secondary biomaterials - serine, fibronectin, collagen, two types of laminins and hyaluronic acid), the cellular structure (trilayer, bilayer, monolayer and control without cells) and their skin tissue of origin (abdominal or foreskin cells) and the manufacturing process [effect of partial dehydration process in cell viability and comparison between submerged (SUB) and air/liquid interface (ALI) methodologies] have been evaluated and compared. Results reveal that the use of human plasma as a main biomaterial determines the in vitro properties, rather than the secondary biomaterials added. Moreover, the characteristics are similar regardless of the skin cells used (from abdomen or foreskin). However, the manufacture of more complex cellular substitutes (trilayer and bilayer) has been demonstrated to be better in terms of cell viability, metabolic activity and wound healing protein secretion (bFGF, EGF, VEGF-A, CCL5) than monolayer HPSSs, especially when ALI culture methodology is applied. Moreover, the application of the dehydration, although required to achieve an appropriate clinical structure, reduce cell viability in all cases. These data indicate that this HPSS model is robust and reliable and that the several subtypes here analysed could be promising clinical approaches depending on the target dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
| | - Jorge Cabañas-Penagos
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Sandra Igual-Roger
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Luis Martínez-Heredia
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Olga Espinosa-Ibáñez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Raquel Sanabria-de la Torre
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, 18071, Spain
| | - María I Quiñones-Vico
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Antonio Lizana-Moreno
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Ana Fernández-González
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Jorge Guerrero-Calvo
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Natividad Fernández-Porcel
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Arena Ramírez-Muñoz
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Salvador Arias-Santiago
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| |
Collapse
|
3
|
Phuphanitcharoenkun S, Louis F, Sowa Y, Matsusaki M, Palaga T. Improving stability of human three dimensional skin equivalents using plasma surface treatment. Biotechnol Bioeng 2024; 121:1950-1960. [PMID: 38470332 DOI: 10.1002/bit.28690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
In developing three-dimensional (3D) human skin equivalents (HSEs), preventing dermis and epidermis layer distortion due to the contraction of hydrogels by fibroblasts is a challenging issue. Previously, a fabrication method of HSEs was tested using a modified solid scaffold or a hydrogel matrix in combination with the natural polymer coated onto the tissue culture surface, but the obtained HSEs exhibited skin layer contraction and loss of the skin integrity and barrier functions. In this study, we investigated the method of HSE fabrication that enhances the stability of the skin model by using surface plasma treatment. The results showed that plasma treatment of the tissue culture surface prevented dermal layer shrinkage of HSEs, in contrast to the HSE fabrication using fibronectin coating. The HSEs from plasma-treated surface showed significantly higher transepithelial electrical resistance compared to the fibronectin-coated model. They also expressed markers of epidermal differentiation (keratin 10, keratin 14 and loricrin), epidermal tight junctions (claudin 1 and zonula occludens-1), and extracellular matrix proteins (collagen IV), and exhibited morphological characteristics of the primary human skins. Taken together, the use of plasma surface treatment significantly improves the stability of 3D HSEs with well-defined dermis and epidermis layers and enhanced skin integrity and the barrier functions.
Collapse
Affiliation(s)
- Suphanun Phuphanitcharoenkun
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, Thailand
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Plastic Surgery, Jichi Medical University, Tochigi, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Quílez C, Valencia L, González‐Rico J, Suárez‐Cabrera L, Amigo‐Morán L, Jorcano JL, Velasco D. In vitro induction of hair follicle signatures using human dermal papilla cells encapsulated in fibrin microgels. Cell Prolif 2024; 57:e13528. [PMID: 37539497 PMCID: PMC10771113 DOI: 10.1111/cpr.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Cellular spheroids have been described as an appropriate culture system to restore human follicle dermal papilla cells (hFDPc) intrinsic properties; however, they show a low and variable efficiency to promote complete hair follicle formation in in vivo experiments. In this work, a conscientious analysis revealed a 25% cell viability in the surface of the dermal papilla spheroid (DPS) for all culture conditions, questioning whether it is an appropriate culture system for hFDPc. To overcome this problem, we propose the use of human blood plasma for the generation of fibrin microgels (FM) with encapsulated hFDPc to restore its inductive signature, either in the presence or in the absence of blood platelets. FM showed a morphology and extracellular matrix composition similar to the native dermal papilla, including Versican and Collagen IV and increasing cell viability up to 85%. While both systems induce epidermal invaginations expressing hair-specific keratins K14, K15, K71, and K75 in in vitro skin cultures, the number of generated structures increases from 17% to 49% when DPS and FM were used, respectively. These data show the potential of our experimental setting for in vitro hair follicle neogenesis with wild adult hFDPc using FM, being a crucial step in the pursuit of human hair follicle regeneration therapies.
Collapse
Affiliation(s)
- Cristina Quílez
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez DíazMadridSpain
| | - Leticia Valencia
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
| | - Jorge González‐Rico
- Department of Continuum Mechanics and Structural AnalysisUniversidad Carlos III de MadridLeganésSpain
| | | | - Lidia Amigo‐Morán
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
| | - José Luis Jorcano
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
- Instituto De Investigacion Sanitaria Gregorio MarañonMadridSpain
| | - Diego Velasco
- Department of BioengineeringUniversidad Carlos III de MadridLeganésSpain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez DíazMadridSpain
- Instituto De Investigacion Sanitaria Gregorio MarañonMadridSpain
| |
Collapse
|
5
|
Footner E, Firipis K, Liu E, Baker C, Foley P, Kapsa RMI, Pirogova E, O'Connell C, Quigley A. Layer-by-Layer Analysis of In Vitro Skin Models. ACS Biomater Sci Eng 2023; 9:5933-5952. [PMID: 37791888 DOI: 10.1021/acsbiomaterials.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.
Collapse
Affiliation(s)
- Elizabeth Footner
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Kate Firipis
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Emily Liu
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Chris Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Peter Foley
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Cathal O'Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
6
|
Martín C, Bachiller A, Fernández-Blázquez JP, Nishina Y, Jorcano JL. Plasma-Derived Fibrin Hydrogels Containing Graphene Oxide for Infections Treatment. ACS MATERIALS LETTERS 2023; 5:1245-1255. [PMID: 38323142 PMCID: PMC10842975 DOI: 10.1021/acsmaterialslett.2c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 02/08/2024]
Abstract
Wound infection is inevitable in most patients suffering from extensive burns or chronic ulcers, and there is an urgent demand for the production of bactericidal dressings to be used as grafts to restore skin functionalities. In this context, the present study explores the fabrication of plasma-derived fibrin hydrogels containing bactericidal hybrids based on graphene oxide (GO). The hydrogels were fully characterized regarding gelation kinetics, mechanical properties, and internal hydrogel structures by disruptive cryo scanning electron microscopies (cryo-SEMs). The gelation kinetic experiments revealed an acceleration of the gel formation when GO was added to the hydrogels in a concentration of up to 0.2 mg/mL. The cryo-SEM studies showed up a decrease of the pore size when GO was added to the network, which agreed with a faster area contraction and a higher compression modulus of the hydrogels that contained GO, pointing out the critical structural role of the nanomaterial. Afterward, to study the bactericidal ability of the gels, GO was used as a carrier, loading streptomycin (STREP) on its surface. The loading content of the drug to form the hybrid (GO/STREP) resulted in 50.2% ± 4.7%, and the presence of the antibiotic was also demonstrated by Raman spectroscopy, Z-potential studies, and thermogravimetric analyses. The fibrin-derived hydrogels containing GO/STREP showed a dose-response behavior according to the bactericidal hybrid concentration and allowed a sustained release of the antibiotic at a programmed rate, leading to drug delivery over a prolonged period of time.
Collapse
Affiliation(s)
- Cristina Martín
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| | - Ariadna Bachiller
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| | | | - Yuta Nishina
- Graduate
School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Research
Core for Interdisciplinary Sciences, Okayama
University, Okayama 700-8530, Japan
| | - José L. Jorcano
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| |
Collapse
|
7
|
Bakulina AA, Musina GR, Gavdush AA, Efremov YM, Komandin GA, Vosough M, Shpichka AI, Zaytsev KI, Timashev PS. PEG-fibrin conjugates: the PEG impact on the polymerization dynamics. SOFT MATTER 2023; 19:2430-2437. [PMID: 36930054 DOI: 10.1039/d2sm01504h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibrin and its modifications, particularly those with functionalized polyethylene glycol (PEG), remain highly attractive as a biomaterial in drug delivery and regenerative medicine. Despite the extensive knowledge of fibrinogenesis, there is little information on the processes occurring after its modification. Previously, we found structural differences between native fibrin and its conjugates with PEG that allows us to hypothesize that a combination of methods such as terahertz (THz) pulsed spectroscopy and rheology may contribute to the characterization of gelation and reveal the effect of PEG on the polymerization dynamics. Compared to native fibrin, PEGylated fibrins had a homogenously soft surface; PEGylation also led to a significant decrease in the gelation time: from 42.75 min for native fibrin to 31.26 min and 35.09 min for 5 : 1 and 10 : 1 PEGylated fibrin, respectively. It is worth noting that THz pulsed spectroscopy makes it possible to reliably investigate only the polymerization process itself, while it does not allow us to observe statistically significant differences between the distinct PEGylated fibrin gels. The polymerization time constant of native fibrin measured by THz pulsed spectroscopy was 14.4 ± 2.8 min. However, it could not be calculated for PEGylated fibrin because the structural changes were too rapid. These results, together with those previously reported, led us to speculate that PEG-fibrin conjugates formed homogenously distributed highly water-shelled aggregates without bundling compared to native fibrin, ensuring rapid gelation and stabilization of the system without increasing its complexity.
Collapse
Affiliation(s)
- Alesia A Bakulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
| | - Guzel R Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Arsenii A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
| | - Gennady A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia I Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
9
|
Phang SJ, Basak S, Teh HX, Packirisamy G, Fauzi MB, Kuppusamy UR, Neo YP, Looi ML. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomater Sci Eng 2022; 8:3220-3241. [PMID: 35861577 DOI: 10.1021/acsbiomaterials.2c00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decades, three-dimensional (3D) organotypic skin models have received enormous attention as alternative models to in vivo animal models and in vitro two-dimensional assays. To date, most organotypic skin models have an epidermal layer of keratinocytes and a dermal layer of fibroblasts embedded in an extracellular matrix (ECM)-based biomaterial. The ECM provides mechanical support and biochemical signals to the cells. Without advancements in ECM-based biomaterials and biofabrication technologies, it would have been impossible to create organotypic skin models that mimic native human skin. In this review, the use of ECM-based biomaterials in the reconstruction of skin models, as well as the study of complete ECM-based biomaterials, such as fibroblasts-derived ECM and decellularized ECM as a better biomaterial, will be highlighted. We also discuss the benefits and drawbacks of several biofabrication processes used in the fabrication of ECM-based biomaterials, such as conventional static culture, electrospinning, 3D bioprinting, and skin-on-a-chip. Advancements and future possibilities in modifying ECM-based biomaterials to recreate disease-like skin models will also be highlighted, given the importance of organotypic skin models in disease modeling. Overall, this review provides an overview of the present variety of ECM-based biomaterials and biofabrication technologies available. An enhanced organotypic skin model is expected to be produced in the near future by combining knowledge from previous experiences and current research.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soumyadeep Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Masri S, Zawani M, Zulkiflee I, Salleh A, Fadilah NIM, Maarof M, Wen APY, Duman F, Tabata Y, Aziz IA, Bt Hj Idrus R, Fauzi MB. Cellular Interaction of Human Skin Cells towards Natural Bioink via 3D-Bioprinting Technologies for Chronic Wound: A Comprehensive Review. Int J Mol Sci 2022; 23:476. [PMID: 35008902 PMCID: PMC8745539 DOI: 10.3390/ijms23010476] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Skin substitutes can provide a temporary or permanent treatment option for chronic wounds. The selection of skin substitutes depends on several factors, including the type of wound and its severity. Full-thickness skin grafts (SGs) require a well-vascularised bed and sometimes will lead to contraction and scarring formation. Besides, donor sites for full-thickness skin grafts are very limited if the wound area is big, and it has been proven to have the lowest survival rate compared to thick- and thin-split thickness. Tissue engineering technology has introduced new advanced strategies since the last decades to fabricate the composite scaffold via the 3D-bioprinting approach as a tissue replacement strategy. Considering the current global donor shortage for autologous split-thickness skin graft (ASSG), skin 3D-bioprinting has emerged as a potential alternative to replace the ASSG treatment. The three-dimensional (3D)-bioprinting technique yields scaffold fabrication with the combination of biomaterials and cells to form bioinks. Thus, the essential key factor for success in 3D-bioprinting is selecting and developing suitable bioinks to maintain the mechanisms of cellular activity. This crucial stage is vital to mimic the native extracellular matrix (ECM) for the sustainability of cell viability before tissue regeneration. This comprehensive review outlined the application of the 3D-bioprinting technique to develop skin tissue regeneration. The cell viability of human skin cells, dermal fibroblasts (DFs), and keratinocytes (KCs) during in vitro testing has been further discussed prior to in vivo application. It is essential to ensure the printed tissue/organ constantly allows cellular activities, including cell proliferation rate and migration capacity. Therefore, 3D-bioprinting plays a vital role in developing a complex skin tissue structure for tissue replacement approach in future precision medicine.
Collapse
Affiliation(s)
- Syafira Masri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mazlan Zawani
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Atiqah Salleh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Fatih Duman
- Department of Biology, Faculty of Science, University of Erciyes, 38039 Kayseri, Turkey
| | - Yasuhiko Tabata
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biomaterials, Institute of Frontier Medical Science, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Izhar Abd Aziz
- 3D Gens Sdn Bhd, 18, Jalan Kerawang U8/108, Bukit Jelutong, Shah Alam 40150, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|