1
|
Salehian M, Emamzadeh R, Nazari M. Exploring the Potential of Arginine to Increase Coelenterazine-Renilla Luciferase Affinity and Enzyme Stability: Kinetic and Molecular Dynamics Studies. Protein J 2024; 43:739-750. [PMID: 38824468 DOI: 10.1007/s10930-024-10208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
Renilla luciferase catalyzes the oxidation of coelenterazine to coelenteramide and results in the emission of a photon of light. Although Renilla luciferase has various applications in biotechnology, its low thermal stability limits the development of its applications. Arginine is a well-known stabilizing amino acid that plays a key role in protein stabilization against inactivation. However, its impact on enzyme properties is unpredictable. This study investigates the impact of arginine on the kinetics and thermal stability of Renilla luciferase. The enzyme's performance was significantly enhanced in the presence of arginine, with catalytic efficiency increasing by 3.31-fold and 3.08-fold when exposed to 0.2 M and 0.3 M arginine, respectively. Additionally, arginine improved the thermal stability of Renilla luciferase. Molecular dynamics simulation showed that the addition of 0.2 M arginine reduced the binding of coelenteramide, the reaction product and an enzyme inhibitor, to the active site of the Renilla luciferase. Therefore, the release of the product was accelerated, and the affinity of Renilla luciferase for coelenterazine increased. Furthermore, Molecular dynamics studies indicated an increased network of water molecules surrounding Renilla luciferase in the presence of 0.2 M arginine. This network potentially enhances the hydrophobic effect on the protein structure, ultimately improving enzyme stability. The findings of this study hold promise for the development of commercial kits incorporating Renilla luciferase.
Collapse
Affiliation(s)
- Maryam Salehian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahboobeh Nazari
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Khoshnevisan G, Emamzadeh R, Nazari M, Oliayi M, Sariri R. Uncovering the role of sorbitol in Renilla luciferase kinetics: Insights from spectroscopic and molecular dynamics studies. Biochem Biophys Rep 2024; 37:101617. [PMID: 38371529 PMCID: PMC10873868 DOI: 10.1016/j.bbrep.2023.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
Renilla luciferase catalyzes the oxidation of coelenterazine to coelenteramide, resulting in the emission of a photon of light. This study investigated the impact of sorbitol on the structural and kinetic properties of Renilla luciferase using circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. Our investigation, carried out using circular dichroism and fluorescence analyses, as well as a thermal stability assay, has revealed that sorbitol induces conformational changes in the enzyme but does not improve its thermal stability. Moreover, through kinetic studies, it has been demonstrated that at a concentration of 0.4 M, sorbitol enhances the catalytic efficiency of Renilla luciferase. However, at higher concentrations, sorbitol results in a decrease in catalytic efficiency. Additionally, molecular dynamics simulations have shown that sorbitol increases the presence of hydrophobic pockets on the enzyme's surface. These simulations have also provided evidence that at a concentration of 0.4 M, sorbitol facilitates substrate access to the active site of the enzyme. Nevertheless, at higher concentrations, sorbitol obstructs substrate trafficking, most likely due to its impact on the gateway to the active site. This study may provide insights into the kinetic changes observed in enzymes with buried active sites, such as those with α/β hydrolase fold.
Collapse
Affiliation(s)
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mina Oliayi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
3
|
An Y, Xu D, Wen X, Chen C, Liu G, Lu Z. Internal Light Sources-Mediated Photodynamic Therapy Nanoplatforms: Hope for the Resolution of the Traditional Penetration Problem. Adv Healthc Mater 2024; 13:e2301326. [PMID: 37413664 DOI: 10.1002/adhm.202301326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Photodynamic therapy (PDT) is an alternative cancer treatment technique with a noninvasive nature, high selectivity, and minimal adverse effects. The indispensable light source used in PDT is a critical factor in determining the energy conversion of photosensitizers (PSs). Traditional light sources are primarily concentrated in the visible light region, severely limiting their penetration depth and making them prone to scattering and absorption when applied to biological tissues. For that reason, its efficacy in treating deep-seated lesions is often inadequate. Self-exciting PDT, also known as auto-PDT (APDT), is an attractive option for circumventing the limited penetration depth of traditional PDT and has acquired significant attention. APDT employs depth-independent internal light sources to excite PSs through resonance or radiative energy transfer. APDT has considerable potential for treating deep-tissue malignancies. To facilitate many researchers' comprehension of the latest research progress in this field and inspire the emergence of more novel research results. This review introduces internal light generation mechanisms and characteristics and provides an overview of current research progress based on the recently reported APDT nanoplatforms. The current challenges and possible solutions of APDT nanoplatforms are also presented and provide insights for future research in the final section of this article.
Collapse
Affiliation(s)
- Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaofei Wen
- Department of Interventional Radiology, The First Affilited Hospital of Xiamen University, Xiamen, 361000, China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Loder S, Patel N, Morgani S, Sambon M, Leucht P, Levi B. Genetic models for lineage tracing in musculoskeletal development, injury, and healing. Bone 2023; 173:116777. [PMID: 37156345 PMCID: PMC10860167 DOI: 10.1016/j.bone.2023.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Musculoskeletal development and later post-natal homeostasis are highly dynamic processes, marked by rapid structural and functional changes across very short periods of time. Adult anatomy and physiology are derived from pre-existing cellular and biochemical states. Consequently, these early developmental states guide and predict the future of the system as a whole. Tools have been developed to mark, trace, and follow specific cells and their progeny either from one developmental state to the next or between circumstances of health and disease. There are now many such technologies alongside a library of molecular markers which may be utilized in conjunction to allow for precise development of unique cell 'lineages'. In this review, we first describe the development of the musculoskeletal system beginning as an embryonic germ layer and at each of the key developmental stages that follow. We then discuss these structures in the context of adult tissues during homeostasis, injury, and repair. Special focus is given in each of these sections to the key genes involved which may serve as markers of lineage or later in post-natal tissues. We then finish with a technical assessment of lineage tracing and the techniques and technologies currently used to mark cells, tissues, and structures within the musculoskeletal system.
Collapse
Affiliation(s)
- Shawn Loder
- Department of Plastic Surgery, University of Pittsburgh, Scaife Hall, Suite 6B, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Nicole Patel
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Phonbuppha J, Tinikul R, Ohmiya Y, Chaiyen P. High Sensitivity and Low-Cost Flavin luciferase (FLUX Vc)-based Reporter Gene for Mammalian Cell Expression. J Biol Chem 2023; 299:104639. [PMID: 36965614 PMCID: PMC10164909 DOI: 10.1016/j.jbc.2023.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
Luciferase-based gene reporters generating bioluminescence signals are important tools for biomedical research. Amongst the luciferases, flavin-dependent enzymes use the most economical chemicals. However, their applications in mammalian cells are limited due to their low signals compared to other systems. Here, we constructed Flavin Luciferase from Vibrio campbellii (Vc) for Mammalian Cell Expression (FLUXVc) by engineering luciferase from Vibrio campbellii (the most thermostable bacterial luciferase reported to date) and optimizing its expression and reporter assays in mammalian cells which can improve the bioluminescence light output by >400-fold as compared to the non-engineered version. We found that the FLUXVc reporter gene can be overexpressed in various cell lines and showed outstanding signal-to-background in HepG2 cells, significantly higher than that of firefly luciferase (Fluc). The combined use of FLUXVc/Fluc as target/control vectors gave the most stable signals, better than the standard set of Fluc(target)/Rluc(control). We also demonstrated that FLUXVc can be used for testing inhibitors of the NF-κB signaling pathway. Collectively, our results provide an optimized method for using the more economical flavin-dependent luciferase in mammalian cells.
Collapse
Affiliation(s)
- Jittima Phonbuppha
- School of Biomolecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan valley, Rayong 21210 Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| | - Yoshihiro Ohmiya
- School of Biomolecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan valley, Rayong 21210 Thailand; National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan; Osaka Institute of Technology (OIT), Osaka, Osaka 535-8585, Japan
| | - Pimchai Chaiyen
- School of Biomolecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan valley, Rayong 21210 Thailand.
| |
Collapse
|
6
|
Páscoa I, Biltes R, Sousa J, Preto MAC, Vasconcelos V, Castro LF, Ruivo R, Cunha I. A Multiplex Molecular Cell-Based Sensor to Detect Ligands of PPARs: An Optimized Tool for Drug Discovery in Cyanobacteria. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031338. [PMID: 36772378 PMCID: PMC9919141 DOI: 10.3390/s23031338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/12/2023]
Abstract
Cyanobacteria produce a wealth of secondary metabolites. Since these organisms attach fatty acids into molecules in unprecedented ways, cyanobacteria can serve as a novel source for bioactive compounds acting as ligands for Peroxisome Proliferator-Activated Receptors (PPAR). PPARs (PPARα, PPARβ/δ and PPARγ) are ligand-activated nuclear receptors, involved in the regulation of various metabolic and cellular processes, thus serving as potential drug targets for a variety of pathologies. Yet, given that PPARs' agonists can have pan-, dual- or isoform-specific action, some controversy has been raised over currently approved drugs and their side effects, highlighting the need for novel molecules. Here, we expand and validate a cell-based PPAR transactivation activity biosensor, and test it in a screening campaign to guide drug discovery. Biosensor upgrades included the use of different reporter genes to increase signal intensity and stability, a different promoter to modulate reporter gene expression, and multiplexing to improve efficiency. Sensor's limit of detection (LOD) ranged from 0.36-0.89 nM in uniplex and 0.89-1.35 nM in multiplex mode. In triplex mode, the sensor's feature screening, a total of 848 fractions of 96 cyanobacteria extracts were screened. Hits were confirmed in multiplex mode and in uniplex mode, yielding one strain detected to have action on PPARα and three strains to have dual action on PPARα and -β.
Collapse
Affiliation(s)
- Inês Páscoa
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Rita Biltes
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - João Sousa
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Marco Aurélio Correia Preto
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Luís Filipe Castro
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Isabel Cunha
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Patel K, Patel DK. The Potential Therapeutic Properties of Prunetin against Human Health Complications: A Review of Medicinal Importance and Pharmacological Activities. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:166-177. [PMID: 36098409 DOI: 10.2174/2949681015666220912104743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavonoids are polyphenolic compounds found to be present in nature and abundant in flowers and fruits. Flavonoidal class phytochemicals have gained interest in the scientific field because of their important pharmacological activities. Several scientific studies have revealed anti-bacterial, anti-oxidant, anti-fungal, analgesic, anti-viral, anti-inflammatory, anti-tumor, anti-parasitic and anti-allergic activities of flavonoidal class phytochemicals. Prunetin is an O-methylated isoflavone that belongs to the phytochemical phytoestrogen class, found to be present in licorice, red cherry, soybean and legumes. METHODS Biological potential and pharmacological activities of prunetin have been investigated in the present work through scientific data analysis of numerous scientific research works. Numerous literature databases have been searched in order to collect the scientific information on prunetin in the present work. Pharmacological activities of prunetin have been investigated in the present work through literature data analysis of different scientific research works. Scientific data have been collected from Google Scholar, Google, PubMed, Science Direct and Scopus. Analytical data on prunetin has been collected from literature sources and analyzed in the present work. RESULTS Scientific data analysis revealed the biological importance of prunetin in medicine. Prunetin was found to be present in the pea, peach, Oregon cherry, skimmed cheese, cheese, cow kefir and goat kefir. Prunetin is also present in the Prunus avium, Andira surinamensis, Butea superba, Dalbergia sympathetica, Ficus nervosa, Pterospartum tridentatum and Pycnanthus angolensis. Pharmacological data analysis revealed the biological importance of prunetin on bone disorders, cancers, especially hepatocellular carcinoma, urinary bladder cancer, gastric cancer, ovarian cancer, human airway, gut health and enzymes. Scientific data analysis revealed biological effectiveness of prunetin for their angiogenic effects, anti-inflammatory, anti-oxidant, antimicrobial, estrogenic and vasorelaxant potential. Analytical data revealed the importance of modern analytical techniques for qualitative and quantitative analysis of prunetin in the scientific fields. CONCLUSION Scientific data analysis in the present investigation revealed the biological importance and pharmacological activities of prunetin in medicine.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pardesh, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pardesh, India
| |
Collapse
|