1
|
Cazacu N, Stan DL, Târcă R, Chilom CG. Binding of flavonoids to yeast aldehyde dehydrogenase: a molecular mechanism and computational approach. J Biomol Struct Dyn 2023; 41:11247-11254. [PMID: 36571489 DOI: 10.1080/07391102.2022.2160820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
The interaction of three flavonoids, apigenin, fisetin and quercetin with yeast aldehyde dehydrogenase, ALDH was studied by spectroscopic and molecular docking methods. A combination of both static and dynamic processes interaction mechanism for the binding of flavonoids with ALDH was found. The interaction takes place with moderate binding and the interaction was driven by hydrophobic contacts. The microenvironments of the fluorescent amino acids changed upon flavonoids binding. The distances between ALDH and flavonoids determined by Förster Resonant Energy Transfer (FRET) confirmed the results obtained by fluorescence. The structure of ALDH against thermal denaturation was stabilized by apigenin and destabilized by fisetin and quercetin. Molecular docking simulation showed that all flavonoids bind to the same site of ALDH and confirmed the moderate binding straight found in fluorescence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Cazacu
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Diana L Stan
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Raluca Târcă
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Claudia G Chilom
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| |
Collapse
|
2
|
Khan S, Cho WC, Hussain A, Azimi S, Babadaei MMN, Bloukh SH, Edis Z, Saeed M, Ten Hagen TLM, Ahmadi H, Ale-Ebrahim M, Jaragh-Alhadad LA, Khan RH, Falahati M, Zhang X, Bai Q. The interaction mechanism of plasma iron transport protein transferrin with nanoparticles. Int J Biol Macromol 2023; 240:124441. [PMID: 37060978 DOI: 10.1016/j.ijbiomac.2023.124441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
In the biological systems, exposure to nanoparticles (NPs) can cause complicated interactions with proteins, the formation of protein corona and structural changes to proteins. These changes depend not only on NP physicochemical properties, but also on the intrinsic stability of protein molecules. Although, the formation of protein corona on the surface of NPs and the underlying mechanisms have been fully explored in various studies, no comprehensive review has discussed the direct biochemical and biophysical interactions between NPs and blood proteins, particularly transferrin. In this review, we first discussed the interaction of NPs with proteins to comprehend the effects of physicochemical properties of NPs on protein structure. We then overviewed the transferrin structure and its direct interaction with NPs to explore transferrin stability and its iron ion (Fe3+) release behavior. Afterwards, we surveyed the various biological functions of transferrin, such as Fe3+ binding, receptor binding, antibacterial activity, growth, differentiation, and coagulation, followed by the application of transferrin-modified NPs in the development of drug delivery systems for cancer therapy. We believe that this study can provide useful insight into the design and development of bioconjugates containing NP-transferrin for potential biomedical applications.
Collapse
Affiliation(s)
- Suliman Khan
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medical Lab Technology, The University of Haripur, Pakistan
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Sadaf Azimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands
| | - Hosein Ahmadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202002, India.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Xiaoju Zhang
- Department of Respiratory and Clinical Care Medicine, Henan Provisional People's Hospital, Zhengzhou, China.
| | - Qian Bai
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|