1
|
Pais ML, Martins J, Castelo‐Branco M, Gonçalves J. Increased susceptibility to kainate-induced seizures in a mouse model of tuberous sclerosis complex: Importance of sex and circadian cycle. Epilepsia Open 2024; 9:1710-1722. [PMID: 39010669 PMCID: PMC11450656 DOI: 10.1002/epi4.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Comorbidity of epilepsy and autism in tuberous sclerosis complex 2 (TSC2) is very frequent, but the link between these conditions is still poorly understood. To study neurological problems related to autism, the scientific community has been using an animal model of TSC2, Tsc2+/- mice. However, it is still unknown whether this model has the propensity to exhibit increased seizure susceptibility. Further, the importance of sex and/or the circadian cycle in this biological process has never been addressed. This research aimed to determine whether male and female Tsc2+/- mice have altered seizure susceptibility at light and dark phases. METHODS We assessed seizure susceptibility and progression in a Tsc2+/- mouse model using the chemical convulsant kainic acid (KA), a potent agonist of the AMPA/kainate class of glutamate receptors. Both male and female animals at adult age were evaluated during non-active and active periods. Seizure severity was determined by integrating individual scores per mouse according to a modified Racine scale. Locomotor behavior was monitored during control and after KA administration. RESULTS We found increased seizure susceptibility in Tsc2+/- mice with a significant influence of sex and circadian cycle on seizure onset, progression, and behavioral outcomes. While, compared to controls, Tsc2+/- males overall exhibited higher susceptibility independently of circadian cycle, Tsc2+/- females were more susceptible during the dark and post-ovulatory phase. Interestingly, sexual dimorphisms related to KA susceptibility were always reported during light phase independently of the genetic background, with females being the most vulnerable. SIGNIFICANCE The enhanced susceptibility in the Tsc2 mouse model suggests that other neurological alterations, beside brain lesions, may be involved in seizure occurrence for TSC. Importantly, our work highlighted the importance of considering biological sex and circadian cycle for further studies of TSC-related epilepsy research. PLAIN LANGUAGE SUMMARY Tuberous sclerosis complex (TSC) is a rare genetic disorder. It causes brain lesions and is linked to epilepsy, intellectual disability, and autism. We wanted to investigate epilepsy in this model. We found that these mice have more induced seizures than control animals. Our results show that these mice can be used in future epilepsy research for this disorder. We also found that sex and time of day can influence the results. This must be considered in this type of research.
Collapse
Affiliation(s)
- Mariana L. Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
| | - Miguel Castelo‐Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
2
|
Kim N, Bonnycastle K, Kind PC, Cousin MA. Delayed recruitment of activity-dependent bulk endocytosis in Fmr1 knockout neurons. J Neurochem 2024; 168:3019-3033. [PMID: 38978454 DOI: 10.1111/jnc.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The presynapse performs an essential role in brain communication via the activity-dependent release of neurotransmitters. However, the sequence of events through which a presynapse acquires functionality is relatively poorly understood, which is surprising, since mutations in genes essential for its operation are heavily implicated in neurodevelopmental disorders. We addressed this gap in knowledge by determining the developmental trajectory of synaptic vesicle (SV) recycling pathways in primary cultures of rat hippocampal neurons. Exploiting a series of optical and morphological assays, we revealed that the majority of nerve terminals displayed activity-dependent calcium influx from 3 days in vitro (DIV), immediately followed by functional evoked exocytosis and endocytosis, although the number of responsive nerve terminals continued to increase until the second week in vitro. However, the most intriguing discovery was that activity-dependent bulk endocytosis (ADBE) was only observed from DIV 14 onwards. Importantly, optimal ADBE recruitment was delayed until DIV 21 in Fmr1 knockout neurons, which model Fragile X Syndrome (FXS). This implicates the delayed recruitment of ADBE as a potential contributing factor in the development of circuit dysfunction in FXS, and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nawon Kim
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Katherine Bonnycastle
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Fu J, Liang P, Zheng Y, Xu C, Xiong F, Yang F. A large deletion in TSC2 causes tuberous sclerosis complex by dysregulating PI3K/AKT/mTOR signaling pathway. Gene 2024; 909:148312. [PMID: 38412945 DOI: 10.1016/j.gene.2024.148312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND/AIM Tuberous sclerosis complex (TSC) is a multi-system syndrome caused by loss-of-function mutation in TSC1 or TSC2. Most TSC patients present with cardiac rhabdomyoma or cortical tubers during fetal life, and the symptoms are not uniform as their age. The gene products of TSC1/2 are components of the TSC protein complex and are important role in the PI3K/AKT/mTOR (PAM) signaling pathway. Based on three members of a family with variable expressivity, the purpose of this study was to clarify the clinical features of TSC in different age groups and to analyze the genetic characteristics of TSC2 gene. METHODS Clinical exome sequencing and co-segregation were used to identify a three-generation family with four affected individuals. HEK-293T cell model was constructed for subsequent experiments. Quantitative RT-PCR, western blotting, and subcellular localization were used to analyze the expression effect of TSC2 mutation. CCK-8 assay, wound healing assay, and cell cycle analysis were used to analyze the function effect of TSC2 mutation. RESULT We identified a TSC family with heterozygous deletion of exon 4 in TSC2 by clinical exon sequencing. Sanger sequencing indicated that the affected individuals have 2541-bp deletion that encompassed exon 4 and adjacent introns. Deletion of exon 4 decreased the TSC2 mRNA and protein levels in HEK-293T cells, and activated the PI3K/AKT/mTOR pathway, thereby altering the cell cycle and promoting cell proliferation and migration. CONCLUSION We confirmed the pathogenicity of the large deletion in TSC2 in a three- generations family.. Deletion of exon 4 of TSC2 affected cell proliferation, migration, and cell cycle via abnormal activation of the PAM pathway. This study evaluated the pathogenic effect of deletion of exon 4 of TSC2 and investigated the underlying mechanism.
Collapse
Affiliation(s)
- Jiahui Fu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peili Liang
- Outpatient & Emergency Management Office, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Yingchun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cailing Xu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fang Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Scheper M, Sørensen FNF, Ruffolo G, Gaeta A, Lissner LJ, Anink JJ, Korshunova I, Jansen FE, Riney K, van Hecke W, Mühlebner A, Khodosevich K, Schubert D, Palma E, Mills JD, Aronica E. Impaired GABAergic regulation and developmental immaturity in interneurons derived from the medial ganglionic eminence in the tuberous sclerosis complex. Acta Neuropathol 2024; 147:80. [PMID: 38714540 PMCID: PMC11076412 DOI: 10.1007/s00401-024-02737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/10/2024]
Abstract
GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Frederik N F Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185, Rome, Italy
- IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - Alessandro Gaeta
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185, Rome, Italy
| | - Lilian J Lissner
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185, Rome, Italy
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Floor E Jansen
- Department of Child Neurology, Brain Center University Medical Center, Member of ERN EpiCare, 3584 BA, Utrecht, The Netherlands
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4067, Australia
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, QLD, 4101, Australia
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Angelika Mühlebner
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Dirk Schubert
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR, Nijmegen, The Netherlands
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185, Rome, Italy
- IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Bucks, SL9 0RJ, UK
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
5
|
Chi OZ, Liu X, Fortus H, Werlen G, Jacinto E, Weiss HR. Inhibition of p70 Ribosomal S6 Kinase (S6K1) Reduces Cortical Blood Flow in a Rat Model of Autism-Tuberous Sclerosis. Neuromolecular Med 2024; 26:10. [PMID: 38570425 PMCID: PMC10990997 DOI: 10.1007/s12017-024-08780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (14C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
6
|
Song T, Deng J, Chen C, Wang X, Han T, Wang X, Fang T, Tian X, Fang F. Long-term effectiveness and tolerability of ketogenic diet therapy in patients with genetic developmental and epileptic encephalopathy onset within the first 6 months of life. Epilepsia Open 2024; 9:643-652. [PMID: 38235958 PMCID: PMC10984301 DOI: 10.1002/epi4.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE To investigate the effectiveness and tolerability of ketogenic diet therapy (KDT) in patients with developmental and epileptic encephalopathy (DEE) associated with genetic etiology which onset within the first 6 months of life, and to explore the association between response to KDT and genotype/clinical parameters. METHODS We retrospectively reviewed data from patients with genetic DEE who started KDT at Beijing Children's Hospital between January 1, 2016, and December 31, 2021. RESULTS A total of 32 patients were included, involving 14 pathogenic or likely pathogenic single genes, and 16 (50.0%) patients had sodium/potassium channel gene variants. The median age at onset of epilepsy was 1.0 (IQR: 0.1, 3.0) months. The median age at initiation of KDT was 10.0 (IQR: 5.3, 13.8) months and the median duration of maintenance was 14.0 (IQR: 7.0, 26.5) months, with a mean blood β-hydroxybutyrate of 2.49 ± 0.62 mmol/L. During the maintenance period of KDT, 26 (81.3%) patients had a ≥50% reduction of seizure frequency, of which 12 (37.5%) patients achieved seizure freedom. Better responses were observed in patients with STXBP1 variants, with four out of five patients achieving seizure freedom. There were no statistically differences in the age of onset, duration of epilepsy before KDT, blood ketone values, or the presence of ion channel gene variants between the seizure-free patients and the others. The most common adverse effects were gastrointestinal side effects, which occurred in 21 patients (65.6%), but all were mild and easily corrected. Only one patient discontinued KDT due to nephrolithiasis. SIGNIFICANCE KDT is effective in treating early onset genetic DEE, and no statistically significant relationship has been found between genotype and effectiveness in this study. KDT is well tolerated in most young patients, with mild and reversible gastrointestinal side effects being the most common, but usually not the reason to discontinue KDT. PLAIN LANGUAGE SUMMARY This study evaluated the response and side effects of ketogenic diet therapy (KDT) in patients who had seizures within the first 6 months of life, and were diagnosed with genetic developmental and epileptic encephalopathy (DEE), a type of severe epilepsy with developmental delay caused by gene variants. Thirty-two patients involving 14 gene variants who started KDT at Beijing Children's Hospital between were included. KDT was effective in treating early onset genetic DEE in this cohort, and patients with STXBP1 variants responded better; however, no statistically significant relationship was found between gene variant and response. Most young patients tolerated KDT well, with mild and reversible gastrointestinal side effects being the most common.
Collapse
Affiliation(s)
- Tianyu Song
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Jie Deng
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Chunhong Chen
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Xiaohui Wang
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Tongli Han
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Xu Wang
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Tie Fang
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Fang Fang
- Department of Neurology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
7
|
Bagh MB, Appu AP, Sadhukhan T, Mondal A, Plavelil N, Raghavankutty M, Supran AM, Sadhukhan S, Liu A, Mukherjee AB. Disruption of lysosomal nutrient sensing scaffold contributes to pathogenesis of a fatal neurodegenerative lysosomal storage disease. J Biol Chem 2024; 300:105641. [PMID: 38211816 PMCID: PMC10862020 DOI: 10.1016/j.jbc.2024.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024] Open
Abstract
The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1-/- mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1-/- mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1-/- mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1-/- mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.
Collapse
Affiliation(s)
- Maria B Bagh
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhilash P Appu
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nisha Plavelil
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahadevan Raghavankutty
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ajayan M Supran
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sriparna Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Liénard C, Pintart A, Bomont P. Neuronal Autophagy: Regulations and Implications in Health and Disease. Cells 2024; 13:103. [PMID: 38201307 PMCID: PMC10778363 DOI: 10.3390/cells13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy is a major degradative pathway that plays a key role in sustaining cell homeostasis, integrity, and physiological functions. Macroautophagy, which ensures the clearance of cytoplasmic components engulfed in a double-membrane autophagosome that fuses with lysosomes, is orchestrated by a complex cascade of events. Autophagy has a particularly strong impact on the nervous system, and mutations in core components cause numerous neurological diseases. We first review the regulation of autophagy, from autophagosome biogenesis to lysosomal degradation and associated neurodevelopmental/neurodegenerative disorders. We then describe how this process is specifically regulated in the axon and in the somatodendritic compartment and how it is altered in diseases. In particular, we present the neuronal specificities of autophagy, with the spatial control of autophagosome biogenesis, the close relationship of maturation with axonal transport, and the regulation by synaptic activity. Finally, we discuss the physiological functions of autophagy in the nervous system, during development and in adulthood.
Collapse
Affiliation(s)
- Caroline Liénard
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
- CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Alexandre Pintart
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| | - Pascale Bomont
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| |
Collapse
|
9
|
Lee HHC, Sahin M. Rodent Models for ASD Biomarker Development. ADVANCES IN NEUROBIOLOGY 2024; 40:189-218. [PMID: 39562446 DOI: 10.1007/978-3-031-69491-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Advances in molecular biology and genetics are increasingly revealing the complex etiology of autism spectrum disorder (ASD). In parallel, a number of biochemical, anatomical, and electrophysiological measures are emerging as potential disease-relevant biomarkers that could inform the diagnosis and clinical management of ASD. Rodent ASD models play a key role in ASD research as essential experimental tools. Nevertheless, there are challenges and limitations to the validity and translational value of rodent models, including genetic relevance and cognitive performance differences between humans and rodents. In this chapter, we begin with a brief history of autism research, followed by prominent examples of disease-relevant mouse models enabled by current knowledge of genetics, molecular biology, and bioinformatics. These ASD-associated rodent models enable quantifiable biomarker development. Finally, we discuss the prospects of ASD biomarker development.
Collapse
Affiliation(s)
- Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Curatolo P, Scheper M, Emberti Gialloreti L, Specchio N, Aronica E. Is tuberous sclerosis complex-associated autism a preventable and treatable disorder? World J Pediatr 2024; 20:40-53. [PMID: 37878130 DOI: 10.1007/s12519-023-00762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 and TSC2 genes, causing overactivation of the mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) signaling pathway in fetal life. The mTOR pathway plays a crucial role in several brain processes leading to TSC-related epilepsy, intellectual disability, and autism spectrum disorder (ASD). Pre-natal or early post-natal diagnosis of TSC is now possible in a growing number of pre-symptomatic infants. DATA SOURCES We searched PubMed for peer-reviewed publications published between January 2010 and April 2023 with the terms "tuberous sclerosis", "autism", or "autism spectrum disorder"," animal models", "preclinical studies", "neurobiology", and "treatment". RESULTS Prospective studies have highlighted that developmental trajectories in TSC infants who were later diagnosed with ASD already show motor, visual and social communication skills in the first year of life delays. Reliable genetic, cellular, electroencephalography and magnetic resonance imaging biomarkers can identify pre-symptomatic TSC infants at high risk for having autism and epilepsy. CONCLUSIONS Preventing epilepsy or improving therapy for seizures associated with prompt and tailored treatment strategies for autism in a sensitive developmental time window could have the potential to mitigate autistic symptoms in infants with TSC.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Mirte Scheper
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, Adamczyk A. Microtubule Cytoskeletal Network Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2023; 24:7303. [PMID: 37108467 PMCID: PMC10138344 DOI: 10.3390/ijms24087303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Karolina Zajdel
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Luhmann HJ. Malformations-related neocortical circuits in focal seizures. Neurobiol Dis 2023; 178:106018. [PMID: 36706927 DOI: 10.1016/j.nbd.2023.106018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.
| |
Collapse
|
13
|
Pérez-Villegas EM, Ruiz R, Bachiller S, Ventura F, Armengol JA, Rosa JL. The HERC proteins and the nervous system. Semin Cell Dev Biol 2022; 132:5-15. [PMID: 34848147 DOI: 10.1016/j.semcdb.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
The HERC protein family is one of three subfamilies of Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases. Six HERC genes have been described in humans, two of which encode Large HERC proteins -HERC1 and HERC2- with molecular weights above 520 kDa that are constitutively expressed in the brain. There is a large body of evidence that mutations in these Large HERC genes produce clinical syndromes in which key neurodevelopmental events are altered, resulting in intellectual disability and other neurological disorders like epileptic seizures, dementia and/or signs of autism. In line with these consequences in humans, two mice carrying mutations in the Large HERC genes have been studied quite intensely: the tambaleante mutant for Herc1 and the Herc2+/530 mutant for Herc2. In both these mutant mice there are clear signs that autophagy is dysregulated, eliciting cerebellar Purkinje cell death and impairing motor control. The tambaleante mouse was the first of these mice to appear and is the best studied, in which the Herc1 mutation elicits: (i) delayed neural transmission in the peripheral nervous system; (ii) impaired learning, memory and motor control; and (iii) altered presynaptic membrane dynamics. In this review, we discuss the information currently available on HERC proteins in the nervous system and their biological activity, the dysregulation of which could explain certain neurodevelopmental syndromes and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Sevilla, Virgen del Rocío University Hospital, CSIC, University of Sevilla, Sevilla, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
14
|
Litwa K. Shared mechanisms of neural circuit disruption in tuberous sclerosis across lifespan: Bridging neurodevelopmental and neurodegenerative pathology. Front Genet 2022; 13:997461. [PMID: 36506334 PMCID: PMC9732432 DOI: 10.3389/fgene.2022.997461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple benign tumors impacting the function of vital organs. In TS patients, dominant negative mutations in TSC1 or TSC2 increase mTORC1 activity. Increased mTORC1 activity drives tumor formation, but also severely impacts central nervous system function, resulting in infantile seizures, intractable epilepsy, and TS-associated neuropsychiatric disorders, including autism, attention deficits, intellectual disability, and mood disorders. More recently, TS has also been linked with frontotemporal dementia. In addition to TS, accumulating evidence implicates increased mTORC1 activity in the pathology of other neurodevelopmental and neurodegenerative disorders. Thus, TS provides a unique disease model to address whether developmental neural circuit abnormalities promote age-related neurodegeneration, while also providing insight into the therapeutic potential of mTORC1 inhibitors for both developing and degenerating neural circuits. In the following review, we explore the ability of both mouse and human brain organoid models to capture TS pathology, elucidate disease mechanisms, and shed light on how neurodevelopmental alterations may later contribute to age-related neurodegeneration.
Collapse
Affiliation(s)
- Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
15
|
Scheper M, Romagnolo A, Besharat ZM, Iyer AM, Moavero R, Hertzberg C, Weschke B, Riney K, Feucht M, Scholl T, Petrak B, Maulisova A, Nabbout R, Jansen AC, Jansen FE, Lagae L, Urbanska M, Ferretti E, Tempes A, Blazejczyk M, Jaworski J, Kwiatkowski DJ, Jozwiak S, Kotulska K, Sadowski K, Borkowska J, Curatolo P, Mills JD, Aronica E. miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Biomedicines 2022; 10:biomedicines10081838. [PMID: 36009385 PMCID: PMC9405248 DOI: 10.3390/biomedicines10081838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multi-system genetic disorder characterized by a high incidence of epilepsy and neuropsychiatric manifestations known as tuberous-sclerosis-associated neuropsychiatric disorders (TANDs), including autism spectrum disorder (ASD) and intellectual disability (ID). MicroRNAs (miRNAs) are small regulatory non-coding RNAs that regulate the expression of more than 60% of all protein-coding genes in humans and have been reported to be dysregulated in several diseases, including TSC. In the current study, RNA sequencing analysis was performed to define the miRNA and isoform (isomiR) expression patterns in serum. A Receiver Operating Characteristic (ROC) curve analysis was used to identify circulating molecular biomarkers, miRNAs, and isomiRs, able to discriminate the development of neuropsychiatric comorbidity, either ASD, ID, or ASD + ID, in patients with TSC. Part of our bioinformatics predictions was verified with RT-qPCR performed on RNA isolated from patients’ serum. Our results support the notion that circulating miRNAs and isomiRs have the potential to aid standard clinical testing in the early risk assessment of ASD and ID development in TSC patients.
Collapse
Affiliation(s)
- Mirte Scheper
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Alessia Romagnolo
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Anand M. Iyer
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
- Child Neurology Unit, Neuroscience Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Christoph Hertzberg
- Diagnose-und Behandlungszentrum für Kinder, Vivantes-Klinikum Neukölln, 12351 Berlin, Germany;
| | - Bernhard Weschke
- Department of Neuropediatrics, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia;
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Theresa Scholl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Borivoj Petrak
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Alice Maulisova
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Member of ERN EpiCARE, Université de Paris, 149 Rue de Sèvres, 75015 Paris, France;
| | - Anna C. Jansen
- Department of Translational Neurosciences, University of Antwerp, 2000 Antwerp, Belgium;
| | - Floor E. Jansen
- Department of Child Neurology, Brain Center University Medical Center, Member of ERN EpiCare, 3584 BA Utrecht, The Netherlands;
| | - Lieven Lagae
- Department of Development and Regeneration Section Pediatric Neurology, University Hospitals KU Leuven, 3000 Leuven, Belgium;
| | - Malgorzata Urbanska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Magdalena Blazejczyk
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | | | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
- Department of Child Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Krzysztof Sadowski
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Julita Borkowska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
| | - James D. Mills
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Correspondence: (J.D.M.); (E.A.)
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Correspondence: (J.D.M.); (E.A.)
| | | |
Collapse
|
16
|
Abstract
Can plasticity be considered as an extension of "immaturity" [...].
Collapse
|
17
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
18
|
Hu X, Yang J, Zhang M, Fang T, Gao Q, Liu X. Clinical Feature, Treatment, and KCNH5 Mutations in Epilepsy. Front Pediatr 2022; 10:858008. [PMID: 35874597 PMCID: PMC9301331 DOI: 10.3389/fped.2022.858008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/14/2022] [Indexed: 12/05/2022] Open
Abstract
The voltage-gated Kv10.2 potassium channel, encoded by KCNH5, is broadly expressed in mammalian tissues, including the brain. Its potential mechanism remains unclear. According to previous studies, dysfunction of Kv10.2 may be associated with epileptic encephalopathies and autism spectrum disorder (ASD). To date, only one disease-causing mutation of KCNH5 has been reported, and it involves a case that presented with seizures and autism symptoms. In this study, we discovered and characterized three de novo mutations in KCNH5 that potentially caused severe conditions observed in three Chinese children. All of them experienced seizures, two of them presented with epileptic encephalopathy, one of them presented with ASD, and one did not relapse after drug withdrawal. Notably, treatment with antiepileptic drugs (AEDs) was effective in all patients whose epileptic seizures were controlled. The structures of the proteins resulting from the mutations were predicted in two of the three cases. This provides powerful insight into clinical heterogeneity and genotype-phenotype correlation in KCNH5-related diseases.
Collapse
Affiliation(s)
- Xiufu Hu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Junli Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Man Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tie Fang
- Beijing Children's Hospital, Beijing, China
| | - Qin Gao
- Beijing MyGenostics Co., Ltd, Beijing, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|