1
|
Avalos-Hernandez A, Juarez-Navarro K, Ruiz-Baca E, Meneses-Morales I, Espino-Saldaña E, Martinez-Torres A, Lopez-Rodriguez A. Unlocking cellular traffic jams: olive oil-mediated rescue of CNG mutant channels. Front Pharmacol 2024; 15:1408156. [PMID: 39119605 PMCID: PMC11306028 DOI: 10.3389/fphar.2024.1408156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
One of the reasons to suggest olive oil consumption for a healthy life is its potential to induce robust lipidomic remodeling through membrane modification by dietary lipids. This remodeling might, in turn, modulate essential lipid-protein interactions while maintaining accurate transmembrane protein/domain orientation. Oleic acid, the primary compound in olive oil, has been suggested as a modulator of ion channel function. In this study, we explored whether this lipid could rescue the trafficking of mutated transmembrane proteins. In our initial approach, we supplemented the cell culture medium of HEK-293 cells expressing cyclic nucleotide channels tagged using green fluorescent protein (CNG-GFP) with olive oil or oleic acid. In addition to wild-type channels, we also expressed R272Q and R278W mutant channels, two non-functional intracellularly retained channels related to retinopathies. We used fluorescence microscopy and patch-clamp in the inside-out configuration to assess changes in the cell localization and function of the tested channels. Our results demonstrated that olive oil and oleic acid facilitated the transport of cyclic nucleotide-gated R272Q mutant channels towards the plasma membrane, rendering them electrophysiologically functional. Thus, our findings reveal a novel property of olive oil as a membrane protein traffic inductor.
Collapse
Affiliation(s)
| | - Karina Juarez-Navarro
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Ivan Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Edith Espino-Saldaña
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Campus Juriquilla, Juriquilla, Mexico
| | - Ataulfo Martinez-Torres
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Campus Juriquilla, Juriquilla, Mexico
| | | |
Collapse
|
2
|
Zhao Z, Wang J, Kong W, Newton MA, Burkett WC, Sun W, Buckingham L, O’Donnell J, Suo H, Deng B, Shen X, Zhang X, Hao T, Zhou C, Bae-Jump VL. Palmitic Acid Exerts Anti-Tumorigenic Activities by Modulating Cellular Stress and Lipid Droplet Formation in Endometrial Cancer. Biomolecules 2024; 14:601. [PMID: 38786008 PMCID: PMC11117634 DOI: 10.3390/biom14050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Epidemiological and clinical evidence have extensively documented the role of obesity in the development of endometrial cancer. However, the effect of fatty acids on cell growth in endometrial cancer has not been widely studied. Here, we reported that palmitic acid significantly inhibited cell proliferation of endometrial cancer cells and primary cultures of endometrial cancer and reduced tumor growth in a transgenic mouse model of endometrial cancer, in parallel with increased cellular stress and apoptosis and decreased cellular adhesion and invasion. Inhibition of cellular stress by N-acetyl-L-cysteine effectively reversed the effects of palmitic acid on cell proliferation, apoptosis, and invasive capacity in endometrial cancer cells. Palmitic acid increased the intracellular formation of lipid droplets in a time- and dose-dependent manner. Depletion of lipid droplets by blocking DGAT1 and DGAT2 effectively increased the ability of palmitic acid to inhibit cell proliferation and induce cleaved caspase 3 activity. Collectively, this study provides new insight into the effect of palmitic acid on cell proliferation and invasion and the formation of lipid droplets that may have potential clinical relevance in the treatment of obesity-driven endometrial cancer.
Collapse
Affiliation(s)
- Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China; (Z.Z.); (J.W.); (W.K.); (H.S.); (B.D.); (X.Z.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China; (Z.Z.); (J.W.); (W.K.); (H.S.); (B.D.); (X.Z.)
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China; (Z.Z.); (J.W.); (W.K.); (H.S.); (B.D.); (X.Z.)
| | - Meredith A. Newton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Wesley C. Burkett
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Lindsey Buckingham
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Jillian O’Donnell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Hongyan Suo
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China; (Z.Z.); (J.W.); (W.K.); (H.S.); (B.D.); (X.Z.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China; (Z.Z.); (J.W.); (W.K.); (H.S.); (B.D.); (X.Z.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China; (Z.Z.); (J.W.); (W.K.); (H.S.); (B.D.); (X.Z.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Xin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China; (Z.Z.); (J.W.); (W.K.); (H.S.); (B.D.); (X.Z.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Tianran Hao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.A.N.); (W.C.B.); (W.S.); (L.B.); (T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Beton-Mysur K, Kopec M, Brozek-Pluska B. Raman Imaging-A Valuable Tool for Tracking Fatty Acid Metabolism-Normal and Cancer Human Colon Single-Cell Study. Int J Mol Sci 2024; 25:4508. [PMID: 38674093 PMCID: PMC11050638 DOI: 10.3390/ijms25084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Altered metabolism of lipids is a key factor in many diseases including cancer. Therefore, investigations into the impact of unsaturated and saturated fatty acids (FAs) on human body homeostasis are crucial for understanding the development of lifestyle diseases. In this paper, we focus on the impact of palmitic (PA), linoleic (LA), and eicosapentaenoic (EPA) acids on human colon normal (CCD-18 Co) and cancer (Caco-2) single cells using Raman imaging and spectroscopy. The label-free nature of Raman imaging allowed us to evaluate FAs dynamics without modifying endogenous cellular metabolism. Thanks to the ability of Raman imaging to visualize single-cell substructures, we have analyzed the changes in chemical composition of endoplasmic reticulum (ER), mitochondria, lipid droplets (LDs), and nucleus upon FA supplementation. Analysis of Raman band intensity ratios typical for lipids, proteins, and nucleic acids (I1656/I1444, I1444/I1256, I1444/I750, I1304/I1256) proved that, using Raman mapping, we can observe the metabolic pathways of FAs in ER, which is responsible for the uptake of exogenous FAs, de novo synthesis, elongation, and desaturation of FAs, in mitochondria responsible for energy production via FA oxidation, in LDs specialized in cellular fat storage, and in the nucleus, where FAs are transported via fatty-acid-binding proteins, biomarkers of human colon cancerogenesis. Analysis for membranes showed that the uptake of FAs effectively changed the chemical composition of this organelle, and the strongest effect was noticed for LA. The spectroscopy studies have been completed using XTT tests, which showed that the addition of LA or EPA for Caco-2 cells decreases their viability with a stronger effect observed for LA and the opposite effect observed for PA. For normal cells, CCD-18 Co supplementation using LA or EPA stimulated cells for growing, while PA had the opposite impact.
Collapse
Affiliation(s)
| | | | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (K.B.-M.); (M.K.)
| |
Collapse
|
4
|
Fang C, Liu S, Yang W, Zheng G, Zhou F, Gao X, Qin L, Yang G, Yang J, Zhu G, Wang X, Huang K, Yang X, Wei Y, Peng S, Li L. Exercise ameliorates lipid droplet metabolism disorder by the PLIN2-LIPA axis-mediated lipophagy in mouse model of non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167045. [PMID: 38306800 DOI: 10.1016/j.bbadis.2024.167045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Excessive hepatic lipid droplets (LDs) accumulation-induced lipid metabolism disorder contributes to the development of non-alcoholic fatty liver disease (NAFLD). Exercise is a promising therapeutic strategy for NAFLD. However, the mechanism by which exercise ameliorates NAFLD through regulating the catabolism of hepatic LDs remains unclear. In the present study, we investigated the effect of perilipin2 (PLIN2)-lysosomal acid lipase (LIPA) axis mediating exercise-triggered lipophagy in a high-fat diet (HFD)-induced NAFLD mouse model. Our results showed that exercise could reduce HFD-induced hepatic LDs accumulation and change the expression of lipolysis-related enzymes. Moreover, exercise upregulated the expression of microtubule associated protein 1 light chain 3 (LC3) and autophagy-related proteins, and downregulated sequestosome 1 (P62) expression and promoted autophagosomes formation. Interestingly, exercise downregulated PLIN2 expression, upregulated LIPA expression, and increased the activity of hepatic LIPA and serum levels of LIPA in the NAFLD mouse model. Further mechanistic studies demonstrated that adenosine monophosphate-activated protein kinase (AMPK) activator-5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr) treatment significantly increased mRNA levels and protein expression of LIPA and LC3II and decreased levels of PLIN2 and P62 in palmitic acid (PA)-treated HepG2 cells. PLIN2 silencing and LIPA overexpression notably increased the mRNA level and protein expression of LC3II and decreased the mRNA level and protein expression of p62, respectively. In summary, our findings reveal novel insights into the effect of exercise on improving lipid droplet metabolism disorder in NAFLD. Enhancing the PLIN2-LIPA axis-mediated lipophagy may be one of the key mechanisms involved in NAFLD alleviation by exercise.
Collapse
Affiliation(s)
- Chunlu Fang
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China; Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Shujing Liu
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China; Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Wenqi Yang
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China; Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Guohua Zheng
- Institute of leisure, Shanghai University of Sport, Shanghai 200438, China
| | - Fu Zhou
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiang Gao
- Sports Training Institute, Guangzhou Sport University, Guangzhou 510500, China
| | - Lian Qin
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Guirong Yang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Jiapei Yang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Guangming Zhu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Xinzhuang Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Kailing Huang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Xincheng Yang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Yuan Wei
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China.
| | - Shuang Peng
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China; Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China.
| | - Liangming Li
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China; Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China.
| |
Collapse
|
5
|
Bernal K, Touma C, Le-Grand B, Rose S, Degerli S, Genêt V, Lagadic-Gossmann D, Coumoul X, Martin-Chouly C, Langouët S, Blanc EB. Assessment of endocrine disruptor impacts on lipid metabolism in a fatty acid-supplemented HepaRG human hepatic cell line. CHEMOSPHERE 2024; 349:140883. [PMID: 38092172 DOI: 10.1016/j.chemosphere.2023.140883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. This disease encompasses several stages, from steatosis to steatohepatitis and, eventually, to fibrosis and cirrhosis. Exposure to environmental contaminants is one of the risk factors and an increasing amount of evidence points to a role for endocrine disrupting compounds (EDCs). This study assesses the impact of selected EDCs on the formation of lipid droplets, the marker for steatosis in a hepatic model. The mechanisms underlying this effect are then explored. Ten compounds were selected according to their obesogenic properties: bisphenol A, F and S, butyl-paraben, cadmium chloride, p,p'-DDE, DBP, DEHP, PFOA and PFOS. Using a 2D or 3D model, HepaRG cells were exposed to the compounds with or without fatty acid supplementation. Then, the formation of lipid droplets was quantified by an automated fluorescence-based method. The expression of genes and proteins involved in lipid metabolism and the impact on cellular respiration was analyzed. The formation of lipid droplets, which is revealed or enhanced by oleic acid supplementation, was most effectively induced by p,p'-DDE and DEHP. Experiments employing either 2D or 3D culture conditions gave similar results. Both compounds induced the expression of PLIN2. p,p'-DDE also appears to act by decreasing in fatty acid oxidation. Some EDCs were able to induce the formation of lipid droplets, in HepaRG cells, an effect which was increased after supplementation of the cells with oleic acid. A full understanding of the mechanisms of these effects will require further investigation. The novel automated detection method described here may also be useful in the future as a regulatory test for EDC risk assessment.
Collapse
Affiliation(s)
- Kévin Bernal
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Charbel Touma
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Béatrice Le-Grand
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Sophie Rose
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Selenay Degerli
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Valentine Genêt
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Xavier Coumoul
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Corinne Martin-Chouly
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Sophie Langouët
- Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail) - UMR-S 1085, Université de Rennes, France
| | - Etienne B Blanc
- Université Paris Cité, T3S, Inserm UMR-S 1124, 45 Rue des Saints Pères, Paris, France.
| |
Collapse
|
6
|
Bautista-González S, Carrillo González NJ, Campos-Ordoñez T, Acosta Elías MA, Pedroza-Montero MR, Beas-Zárate C, Gudiño-Cabrera G. Raman spectroscopy to assess the differentiation of bone marrow mesenchymal stem cells into a glial phenotype. Regen Ther 2023; 24:528-535. [PMID: 37841662 PMCID: PMC10570561 DOI: 10.1016/j.reth.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent precursor cells with the ability to self-renew and differentiate into multiple cell linage, including the Schwann-like fate that promotes regeneration after lesion. Raman spectroscopy provides a precise characterization of the osteogenic, adipogenic, hepatogenic and myogenic differentiation of MSCs. However, the differentiation of bone marrow mesenchymal stem cells (BMSCs) towards a glial phenotype (Schwann-like cells) has not been characterized before using Raman spectroscopy. Method We evaluated three conditions: 1) cell culture from rat bone marrow undifferentiated (uBMSCs), and two conditions of differentiation; 2) cells exposed to olfactory ensheathing cells-conditioned medium (dBMSCs) and 3) cells obtained from olfactory bulb (OECs). uBMSCs phenotyping was confirmed by morphology, immunocytochemistry and flow cytometry using antibodies of cell surface: CD90 and CD73. Glial phenotype of dBMSCs and OECs were verified by morphology and immunocytochemistry using markers of Schwann-like cells and OECs such as GFAP, p75 NTR and O4. Then, the Principal Component Analysis (PCA) of Raman spectroscopy was performed to discriminate components from the high wavenumber region between undifferentiated and glial-differentiated cells. Raman bands at the fingerprint region also were used to analyze the differentiation between conditions. Results Differences between Raman spectra from uBMSC and glial phenotype groups were noted at multiple Raman shift values. A significant decrease in the concentration of all major cellular components, including nucleic acids, proteins, and lipids were found in the glial phenotype groups. PCA analysis confirmed that the highest spectral variations between groups came from the high wavenumber region observed in undifferentiated cells and contributed with the discrimination between glial phenotype groups. Conclusion These findings support the use of Raman spectroscopy for the characterization of uBMSCs and its differentiation in the glial phenotype.
Collapse
Affiliation(s)
- Sulei Bautista-González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nidia Jannette Carrillo González
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Tania Campos-Ordoñez
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Mónica Alessandra Acosta Elías
- Laboratorio de Biofísica Médica, Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Martín Rafael Pedroza-Montero
- Laboratorio de Biofísica Médica, Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Carlos Beas-Zárate
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
7
|
Reichelt K, Niebisch AM, Kacza J, Schoeniger A, Fuhrmann H. The Bovine Hepatic Cell Line BFH12 as a Possible Model for Hepatosteatosis in Dairy Cows. Front Vet Sci 2022; 9:840202. [PMID: 35359674 PMCID: PMC8963807 DOI: 10.3389/fvets.2022.840202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatosteatosis is a common metabolic disorder of dairy cows, especially during early lactation. Currently, there are a few models of bovine hepatic steatosis available, including primary hepatocytes, liver slices, and animal models. Studies that elucidate the influence of single fatty acids on lipid classes, fatty acid pattern, gene expression, and phenotypic changes are still limited. Hence, we investigated the suitability of the fetal bovine hepatocyte-derived cell line BFH12 as a model for hepatosteatosis. To create a steatotic environment, we treated BFH12 with stearic acid, palmitic acid, or oleic acid in non-toxic doses. Thin-layer chromatography and gas chromatography were used to analyze lipid classes and fatty acid pattern, and qPCR was used to quantify gene expression of relevant target genes. Lipid droplets were visualized with confocal laser scanning microscopy and evaluated for number and size. Treatment with oleic acid increased triglycerides, as well as lipid droplet count per cell and upregulated carnitine palmitoyl transferase 1, which correlates with findings of in vivo models. Oleic acid was largely incorporated into triglycerides, phospholipids, and non-esterified fatty acids. Stearic acid was found mainly in non-esterified fatty acids and triglycerides, whereas palmitic acid was mainly desaturated to palmitoleic acid. All three fatty acids downregulated stearyl-CoA-desaturase 1. In conclusion, BFH12 can acquire a steatotic phenotype by incorporating and accumulating fatty acids. Oleic acid is particularly suitable to produce hepatosteatosis. Therefore, BFH12 may be a useful in vitro model to study bovine hepatosteatosis and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kristin Reichelt
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
- *Correspondence: Kristin Reichelt
| | - Anna M. Niebisch
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Axel Schoeniger
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Herbert Fuhrmann
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Nagul Kumar S, Buvanesvaragurunathan K, Govindaraj R, Rajan S, Balakrishna K, Shirota O, Radha A, Perumal P, Ignacimuthu S. Hepatoprotective constituents from Macrocybe gigantea (Massee) Pegler & Lodge. Int J Med Mushrooms 2022; 24:35-47. [DOI: 10.1615/intjmedmushrooms.2022045329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|