1
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2024; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
2
|
Dehesa-Santos A, Faria-Teixeira MC, Iglesias-Linares A. Skeletal Class III phenotype: Link between animal models and human genetics: A scoping review. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:21-44. [PMID: 38108095 DOI: 10.1002/jez.b.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
This study aimed to identify evidence from animal studies examining genetic variants underlying maxillomandibular discrepancies resulting in a skeletal Class III (SCIII) malocclusion phenotype. Following the Manual for Evidence Synthesis of the JBI and the PRISMA extension for scoping reviews, a participant, concept, context question was formulated and systematic searches were executed in the PubMed, Scopus, WOS, Scielo, Open Gray, and Mednar databases. Of the 779 identified studies, 13 met the selection criteria and were included in the data extraction. The SCIII malocclusion phenotype was described as mandibular prognathism in the Danio rerio, Dicentrarchus labrax, and Equus africanus asinus models; and as maxillary deficiency in the Felis silvestris catus, Canis familiaris, Salmo trutta, and Mus musculus models. The identified genetic variants highlight the significance of BMP and TGF-β signaling. Their regulatory pathways and genetic interactions link them to cellular bone regulation events, particularly ossification regulation of postnatal cranial synchondroses. In conclusion, twenty genetic variants associated with the skeletal SCIII malocclusion phenotype were identified in animal models. Their interactions and regulatory pathways corroborate the role of these variants in bone growth, differentiation events, and ossification regulation of postnatal cranial synchondroses.
Collapse
Affiliation(s)
| | - Maria Cristina Faria-Teixeira
- School of Dentistry, Complutense University of Madrid, Madrid, Spain
- University Clinic of Stomatology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Alejandro Iglesias-Linares
- School of Dentistry, Complutense University of Madrid, Madrid, Spain
- BIOCRAN, Craniofacial Biology and Orthodontics Research Group, School of Dentistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Čverha M, Varga I, Trenčanská T, Šufliarsky B, Thurzo A. The Evolution of Robin Sequence Treatment Based on the Biomimetic Interdisciplinary Approach: A Historical Review. Biomimetics (Basel) 2023; 8:536. [PMID: 37999177 PMCID: PMC10669884 DOI: 10.3390/biomimetics8070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The Robin sequence is a congenital anomaly characterized by a triad of features: micrognathia, glossoptosis, and airway obstruction. This comprehensive historical review maps the evolution of approaches and appliances for its treatment from the past to the current modern possibilities of an interdisciplinary combination of modern engineering, medicine, materials, and computer science combined approach with emphasis on designing appliances inspired by nature and individual human anatomy. Current biomimetic designs are clinically applied, resulting in appliances that are more efficient, comfortable, sustainable, and safer than legacy traditional designs. This review maps the treatment modalities that have been used for patients with a Robin sequence over the years. Early management of the Robin sequence focused primarily on airway maintenance and feeding support, while current management strategies involve both nonsurgical and surgical interventions and biomimetic biocompatible personalized appliances. The goal of this paper was to provide a review of the evolution of management strategies for patients with the Robin sequence that led to the current interdisciplinary biomimetic approaches impacting the future of Robin Sequence treatment with biomimetics at the forefront.
Collapse
Affiliation(s)
- Martin Čverha
- Clinic of Pediatric Otorhinolaryngology of the Medical Faculty Comenius University in Bratislava and National Institute of Children’s Diseases, 83101 Bratislava, Slovakia;
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia;
| | - Tereza Trenčanská
- Clinic of Pediatric Otorhinolaryngology of the Medical Faculty Comenius University in Bratislava and National Institute of Children’s Diseases, 83101 Bratislava, Slovakia;
| | - Barbora Šufliarsky
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava and University Hospital, 81372 Bratislava, Slovakia;
| | - Andrej Thurzo
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, 81102 Bratislava, Slovakia
| |
Collapse
|
4
|
Tran MH, Nguyen TVA, Do HG, Kieu TK, Nguyen TKT, Le HD, Guerrero-Limon G, Massoz L, Nivelle R, Zappia J, Pham HT, Nguyen LT, Muller M. Testing biological actions of medicinal plants from northern Vietnam on zebrafish embryos and larvae: Developmental, behavioral, and putative therapeutical effects. PLoS One 2023; 18:e0294048. [PMID: 37934745 PMCID: PMC10629648 DOI: 10.1371/journal.pone.0294048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
Evaluating the risks and benefits of using traditional medicinal plants is of utmost importance for a huge fraction of the human population, in particular in Northern Vietnam. Zebrafish are increasingly used as a simple vertebrate model for testing toxic and physiological effects of compounds, especially on development. Here, we tested 12 ethanolic extracts from popular medicinal plants collected in northern Vietnam for their effects on zebrafish survival and development during the first 4 days after fertilization. We characterized more in detail their effects on epiboly, hatching, growth, necrosis, body curvature, angiogenesis, skeletal development and mostly increased movement behavior. Finally, we confirm the effect on epiboly caused by the Mahonia bealei extract by staining the actin filaments and performing whole genome gene expression analysis. Further, we show that this extract also inhibits cell migration of mouse embryo fibroblasts. Finally, we analyzed the chemical composition of the Mahonia bealei extract and test the effects of its major components. In conclusion, we show that traditional medicinal plant extracts are able to affect zebrafish early life stage development to various degrees. In addition, we show that an extract causing delay in epiboly also inhibits mammalian cell migration, suggesting that this effect may serve as a preliminary test for identifying extracts that inhibit cancer metastasis.
Collapse
Affiliation(s)
- My Hanh Tran
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Thi Van Anh Nguyen
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Hoang Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trung Kien Kieu
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Thi Kim Thanh Nguyen
- Department of Plant Science, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Hong Diep Le
- Department of Plant Science, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Gustavo Guerrero-Limon
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Laura Massoz
- Zebrafish Development and Disease Model laboratory, GIGA Stem cells, Université de Liège, Liège, Belgium
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Jérémie Zappia
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| | - Hai The Pham
- Department of Microbiology, Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Lai Thanh Nguyen
- GREENLAB, Center for Life Science Research (CELIFE), Vietnam National University of Science, Faculty of Biology, Hanoi, Vietnam
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA I3, Université de Liège, Liège, Belgium
| |
Collapse
|
5
|
Washausen S, Knabe W. Patterns of senescence and apoptosis during development of branchial arches, epibranchial placodes, and pharyngeal pouches. Dev Dyn 2023; 252:1189-1223. [PMID: 37345578 DOI: 10.1002/dvdy.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Many developmental processes are coregulated by apoptosis and senescence. However, there is a lack of data on the development of branchial arches, epibranchial placodes, and pharyngeal pouches, which harbor epibranchial signaling centers. RESULTS Using immunohistochemical, histochemical, and 3D reconstruction methods, we show that in mice, senescence and apoptosis together may contribute to the invagination of the branchial clefts and the deepening of the cervical sinus floor, in antagonism to the proliferation acting in the evaginating branchial arches. The concomitant apoptotic elimination of lateral line rudiments occurs in the absence of senescence. In the epibranchial placodes, senescence and apoptosis appear to (1) support invagination or at least indentation by immobilizing the margins of the centrally proliferating pit, (2) coregulate the number and fate of Pax8+ precursors, (3) progressively narrow neuroblast delamination sites, and (4) contribute to placode regression. Putative epibranchial signaling centers in the pharyngeal pouches are likely deactivated by rostral senescence and caudal apoptosis. CONCLUSIONS Our results reveal a plethora of novel patterns of apoptosis and senescence, some overlapping, some complementary, whose functional contributions to the development of the branchial region, including the epibranchial placodes and their signaling centers, can now be tested experimentally.
Collapse
Affiliation(s)
- Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
6
|
Alata Jimenez N, Castellano M, Santillan EM, Boulias K, Boan A, Arias Padilla LF, Fernandino JI, Greer EL, Tosar JP, Cochella L, Strobl-Mazzulla PH. Paternal methotrexate exposure affects sperm small RNA content and causes craniofacial defects in the offspring. Nat Commun 2023; 14:1617. [PMID: 36959185 PMCID: PMC10036556 DOI: 10.1038/s41467-023-37427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Folate is an essential vitamin for vertebrate embryo development. Methotrexate (MTX) is a folate antagonist that is widely prescribed for autoimmune diseases, blood and solid organ malignancies, and dermatologic diseases. Although it is highly contraindicated for pregnant women, because it is associated with an increased risk of multiple birth defects, the effect of paternal MTX exposure on their offspring has been largely unexplored. Here, we found MTX treatment of adult medaka male fish (Oryzias latipes) causes cranial cartilage defects in their offspring. Small non-coding RNA (sncRNAs) sequencing in the sperm of MTX treated males identify differential expression of a subset of tRNAs, with higher abundance for specific 5' tRNA halves. Sperm RNA methylation analysis on MTX treated males shows that m5C is the most abundant and differential modification found in RNAs ranging in size from 50 to 90 nucleotides, predominantly tRNAs, and that it correlates with greater testicular Dnmt2 methyltransferase expression. Injection of sperm small RNA fractions from MTX-treated males into normal fertilized eggs generated cranial cartilage defects in the offspring. Overall, our data suggest that paternal MTX exposure alters sperm sncRNAs expression and modifications that may contribute to developmental defects in their offspring.
Collapse
Affiliation(s)
- Nagif Alata Jimenez
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Mauricio Castellano
- Functional Genomics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
- School of Science, Universidad de la República, Montevideo, Uruguay
| | - Emilio M Santillan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Konstantinos Boulias
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Agustín Boan
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Luisa F Arias Padilla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Juan I Fernandino
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Eric L Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Juan P Tosar
- Functional Genomics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
- School of Science, Universidad de la República, Montevideo, Uruguay
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
7
|
Pilon N. Neural Crest Development in Health and Disease. Int J Mol Sci 2022; 23:ijms232213684. [PMID: 36430161 PMCID: PMC9691040 DOI: 10.3390/ijms232213684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The first volume of this Special Issue met its goal of covering several aspects regarding both the normal and abnormal development of neural crest cells, which form a truly unique multipotent and highly migratory cell population that only exists in vertebrates [...].
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Faculty of Sciences, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada;
- Centre d’Excellence en Recherche sur les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC H2X 3Y7, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
8
|
Fabik J, Psutkova V, Machon O. Meis2 controls skeletal formation in the hyoid region. Front Cell Dev Biol 2022; 10:951063. [PMID: 36247013 PMCID: PMC9554219 DOI: 10.3389/fcell.2022.951063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
A vertebrate skull is composed of many skeletal elements which display enormous diversity of shapes. Cranial bone formation embodies a multitude of processes, i.e., epithelial-mesenchymal induction, mesenchymal condensation, and endochondral or intramembranous ossification. Molecular pathways determining complex architecture and growth of the cranial skeleton during embryogenesis are poorly understood. Here, we present a model of the hyoid apparatus development in Wnt1-Cre2-induced Meis2 conditional knock-out (cKO) mice. Meis2 cKO embryos develop an aberrant hyoid apparatus—a complete skeletal chain from the base of the neurocranium to lesser horns of the hyoid, resembling extreme human pathologies of the hyoid-larynx region. We examined key stages of hyoid skeletogenesis to obtain a complex image of the hyoid apparatus formation. Lack of Meis2 resulted in ectopic loci of mesenchymal condensations, ectopic cartilage and bone formation, disinhibition of skeletogenesis, and elevated proliferation of cartilage precursors. We presume that all these mechanisms contribute to formation of the aberrant skeletal chain in the hyoid region. Moreover, Meis2 cKO embryos exhibit severely reduced expression of PBX1 and HAND2 in the hyoid region. Altogether, MEIS2 in conjunction with PBX1 and HAND2 affects mesenchymal condensation, specification and proliferation of cartilage precursors to ensure development of the anatomically correct hyoid apparatus.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Ondrej Machon,
| |
Collapse
|