1
|
Braga EA, Burdennyy AM, Uroshlev LA, Zaichenko DM, Filippova EA, Lukina SS, Pronina IV, Astafeva IR, Fridman MV, Kazubskaya TP, Loginov VI, Dmitriev AA, Moskovtsev AA, Kushlinskii NE. Ten Hypermethylated lncRNA Genes Are Specifically Involved in the Initiation, Progression, and Lymphatic and Peritoneal Metastasis of Epithelial Ovarian Cancer. Int J Mol Sci 2024; 25:11843. [PMID: 39519394 PMCID: PMC11547154 DOI: 10.3390/ijms252111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Our work aimed to evaluate and differentiate the role of ten lncRNA genes (GAS5, HAND2-AS1, KCNK15-AS1, MAGI2-AS3, MEG3, SEMA3B-AS1, SNHG6, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in the development and progression of epithelial ovarian cancer (EOC). A representative set of clinical samples was used: 140 primary tumors from patients without and with metastases and 59 peritoneal metastases. Using MS-qPCR, we demonstrated an increase in methylation levels of all ten lncRNA genes in tumors compared to normal tissues (p < 0.001). Using RT-qPCR, we showed downregulation and an inverse relationship between methylation and expression levels for ten lncRNAs (rs < -0.5). We further identified lncRNA genes that were specifically hypermethylated in tumors from patients with metastases to lymph nodes (HAND2-AS1), peritoneum (KCNK15-AS1, MEG3, and SEMA3B-AS1), and greater omentum (MEG3, SEMA3B-AS1, and ZNF667-AS1). The same four lncRNA genes involved in peritoneal spread were associated with clinical stage and tumor extent (p < 0.001). Interestingly, we found a reversion from increase to decrease in the hypermethylation level of five metastasis-related lncRNA genes (MEG3, SEMA3B-AS1, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in 59 peritoneal metastases. This reversion may be associated with partial epithelial-mesenchymal transition (EMT) in metastatic cells, as indicated by a decrease in the level of the EMT marker, CDH1 mRNA (p < 0.01). Furthermore, novel mRNA targets and regulated miRNAs were predicted for a number of the studied lncRNAs using the NCBI GEO datasets and analyzed by RT-qPCR and transfection of SKOV3 and OVCAR3 cells. In addition, hypermethylation of SEMA3B-AS1, SSTR5-AS1, and ZNF667-AS1 genes was proposed as a marker for overall survival in patients with EOC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Leonid A. Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.A.U.); (M.V.F.)
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Svetlana S. Lukina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Iana R. Astafeva
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.A.U.); (M.V.F.)
| | - Tatiana P. Kazubskaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Aleksey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
- Russian Medical Academy of Continuing Professional Education, 125993 Moscow, Russia
| | - Nikolay E. Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| |
Collapse
|
2
|
Di Fiore R, Drago-Ferrante R, Suleiman S, Veronese N, Pegreffi F, Calleja-Agius J. Sarcopenia in gynaecological cancers. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108403. [PMID: 38760237 DOI: 10.1016/j.ejso.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Gynaecological cancers (GCs) comprise a group of cancers that originate in the female reproductive organs. Each GC is unique, with different signs and symptoms, risk factors and therapeutic strategies. Worldwide, the majority of GCs are still associated with high mortality rates, especially ovarian, due to difficulty in early detection. Despite numerous studies on the underlying pathophysiology, research in the field of GCs poses unique scientific and technological challenges. These challenges require a concerted multi- and inter-disciplinary effort by the clinical, scientific and research communities to accelerate the advancement of prognostic, diagnostic, and therapeutic approaches. Sarcopenia is a multifactorial disease which leads to the systemic loss of skeletal muscle mass and function. It can be caused by malignancies, as well as due to malnutrition, physical inactivity, ageing and neuromuscular, inflammatory, and/or endocrine diseases. Anorexia and systemic inflammation can shift the metabolic balance of patients with cancer cachexia towards catabolism of skeletal muscle, and hence sarcopenia. Therefore, sarcopenia is considered as an indicator of poor general health status, as well as the possible indicator of advanced cancer. There is a growing body of evidence showing the prognostic significance of sarcopenia in various cancers, including GCs. This review will outline the clinical importance of sarcopenia in patients with GCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Rosa Drago-Ferrante
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta; BioDNA Laboratories, Malta Life Sciences Park, SGN 3000, San Gwann, Malta.
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta.
| | - Nicola Veronese
- Department of Internal Medicine, Geriatrics Section, University of Palermo, 90128, Palermo, Italy.
| | - Francesco Pegreffi
- Department of Medicine and Surgery, Kore University of Enna, 94100, Enna, Italy.
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta.
| |
Collapse
|
3
|
Sun P, Wang Y, Liu X, Li Z, Cui D, Li Q, Wang Q, Wang J. Methylation-driven mechanisms of allergic rhinitis during pollen and non-pollen seasons using integrated bioinformatics analysis. Front Genet 2024; 15:1242974. [PMID: 38699230 PMCID: PMC11063319 DOI: 10.3389/fgene.2024.1242974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Background Allergic rhinitis (AR) is a widespread allergic airway disease that results from a complex interplay between genetic and environmental factors and affects approximately 10%-40% of the global population. Pollen is a common allergen, and exposure to pollen can cause epigenetic changes. However, the mechanism underlying pollen-induced DNA methylation changes and their potential effects on the allergic march are still unclear. The purpose of this study was to explore the methylation-driven mechanisms of AR during the pollen and non-pollen seasons using bioinformatics analysis and to investigate their relationship with asthma. Methods We downloaded DNA methylation and gene expression data from the GEO database (GSE50387: GSE50222, GSE50101) and identified differentially methylated positions (DMPs) and differentially expressed genes (DEGs) during the pollen and non-pollen seasons using the CHAMP and limma packages. Through correlation analysis, we identified methylation-driven genes and performed pathway enrichment analysis to annotate their functions. We incorporated external data on AR combined with asthma (GSE101720) for analysis to identify key CpGs that promote the transformation of AR to asthma. We also utilized external data on olive pollen allergy (GSE54522) for analysis to validate the methylation-driven genes. Weighted correlation network analysis (WGCNA) was employed to identify gene modules significantly correlated with pollen allergy. We extracted genes related to the key methylation-driven gene ZNF667-AS1 from the significant module and performed pathway intelligent clustering using KOBAS-i. We also utilized gene set enrichment analysis to explore the potential function of ZNF667-AS1. Results We identified 20 and 24 CpG-Gene pairings during the pollen and non-pollen seasons. After incorporating external data from GSE101720, we found that ZNF667-AS1 is a key gene that may facilitate the transformation of AR into asthma during the pollen season. This finding was further validated in another external dataset, GSE54522, which is associated with pollen allergy. WGCNA identified 17 modules, among which the blue module showed significant correlation with allergies. ZNF667-AS1 was located in the blue module. We performed pathway analysis on the genes correlated with ZNF667-AS1 extracted from the blue module and identified a prominent cluster of pathways in the KOBAS-i results, including Toll-like receptor (TLR) family, MyD88, MAPK, and oxidative stress. Gene set enrichment analysis around cg05508084 (paired with ZNF667-AS1) also indicated its potential involvement in initiating and modulating allergic inflammation from the perspective of TLR and MAPK signaling. Conclusion We identified methylation-driven genes and their related pathways during the pollen and non-pollen seasons in patients with AR and identified key CpGs that promote the transformation of AR into asthma due to pollen exposure. This study provides new insights into the underlying molecular mechanisms of the transformation of AR to asthma.
Collapse
Affiliation(s)
- Pengcheng Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Diankun Cui
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianru Li
- Qinghai Golmud Jianqiao Hospital, Golmud, Qinghai, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Nazari A, Ghasemi T, Khalaj-Kondori M, Fathi R. Promoter of lncRNA MORT is aberrantly methylated in colorectal cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-13. [PMID: 38619194 DOI: 10.1080/15257770.2024.2328732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
Aberrant DNA methylation plays essential roles in the colorectal cancer (CRC) carcinogenesis and has been demonstrated as a promising marker for cancer early detection. In this project, methylation status of the MORT promoter was studied in CRC and their marginal tissues using qMSP assay. Furthermore, we investigated the molecular function of MORT in CRC progression using computational analysis. The results showed a high methylation level of MORT promoter in CRC tissues. By in silico analysis, we found that MORT downregulation could promote the proliferation of CRC cells via sponging of has-miR-574-5p and has-miR-31-5p, and alteration of their targets expression pattern such as MYOCD and FOXP2. In conclusion, based on our results, promoter hypermethylation of MORT might be considered as a potential biomarker for CRC detection.
Collapse
Affiliation(s)
- Aylar Nazari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ramin Fathi
- Department of Genetics, Molecular Cell Group, Faculty of Basic Science, Islamic Azad University of Ahar, Ahar, Iran
| |
Collapse
|
5
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Suleiman S, Vasileva-Slaveva M, Yordanov A, Pentimalli F, Giordano A, Calleja-Agius J. The Role of FBXW7 in Gynecologic Malignancies. Cells 2023; 12:1415. [PMID: 37408248 DOI: 10.3390/cells12101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10 or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF) complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7 gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers (GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance. Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic biomarker that plays a central role in determining suitable individualized management. Recent studies also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a therapeutic target for novel treatments, particularly in the management of GCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | | | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Sarah Suleiman
- Whipps Cross Hospital, Barts Health NHS Trust, Leytonstone, London E11 1NR, UK
| | - Mariela Vasileva-Slaveva
- Department of Breast Surgery, "Dr. Shterev" Hospital, 1330 Sofia, Bulgaria
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
- Bulgarian Breast and Gynecological Cancer Association, 1784 Sofia, Bulgaria
| | - Angel Yordanov
- Department of Gynecological Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", 70010 Casamassima, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
6
|
Wang M, Fu L, Xu Y, Ma S, Zhang X, Zheng L. A comprehensive overview of exosome lncRNAs: Emerging biomarkers and potential therapeutics in gynecological cancers. Front Oncol 2023; 13:1138142. [PMID: 37007117 PMCID: PMC10063919 DOI: 10.3389/fonc.2023.1138142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Ovarian, endometrial, and cervical cancer are common gynecologic malignancies, and their incidence is increasing year after year, with a younger patient population at risk. An exosome is a tiny “teacup-like” blister that can be secreted by most cells, is highly concentrated and easily enriched in body fluids, and contains a large number of lncRNAs carrying some biological and genetic information that can be stable for a long time and is not affected by ribonuclease catalytic activity. As a cell communication tool, exosome lncRNA has the advantages of high efficiency and high targeting. Changes in serum exosome lncRNA expression in cancer patients can accurately reflect the malignant biological behavior of cancer cells. Exosome lncRNA has been shown in studies to have broad application prospects in cancer diagnosis, monitoring cancer recurrence or progression, cancer treatment, and prognosis. The purpose of this paper is to provide a reference for clinical research on the pathogenesis, diagnosis, and treatment of gynecologic malignant tumors by reviewing the role of exosome lncRNA in gynecologic cancers and related molecular mechanisms.
Collapse
|
7
|
Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. Int J Mol Sci 2022; 23:ijms23137465. [PMID: 35806469 PMCID: PMC9267413 DOI: 10.3390/ijms23137465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.
Collapse
|
8
|
Wei L, Gu W, Hu L, Wang K, Huang H, Shen Y. Regulation of lncRNA ZNF667-AS1 in proliferation and invasion of esophageal squamous cell carcinoma cells via mediating ceRNA network. Crit Rev Eukaryot Gene Expr 2022; 32:57-68. [DOI: 10.1615/critreveukaryotgeneexpr.2022042267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Xia F, Yan Y, Shen C. A Prognostic Pyroptosis-Related lncRNAs Risk Model Correlates With the Immune Microenvironment in Colon Adenocarcinoma. Front Cell Dev Biol 2021; 9:811734. [PMID: 34966747 PMCID: PMC8710686 DOI: 10.3389/fcell.2021.811734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Recent studies have indicated that long non-coding RNAs (lncRNAs) may participate in the regulation of tumor cell proptosis. However, the connection between lncRNA expression and pyroptosis remains unclear in colon adenocarcinoma (COAD). This study aims to explore and establish a prognostic signature of COAD based on the pyroptosis-related lncRNAs. We identify 15 prognostic pyroptosis-related lncRNAs (ZNF667-AS1, OIP5-AS1, AL118506.1, AF117829.1, POC1B-AS1, CCDC18-AS1, THUMPD3-AS1, FLNB-AS1, SNHG11, HCG18, AL021707.2, UGDH-AS1, LINC00641, FGD5-AS1 and AC245452.1) from the TCGA-COAD dataset and use them to construct the risk model. After then, this pyroptosis-related lncRNA signature is validated in patients from the GSE17536 dataset. The COAD patients are divided into low-risk and high-risk groups by setting the median risk score as the cut-off point and represented differences in the immune microenvironment. Hence, we construct the immune risk model based on the infiltration levels of ssGSEA immune cells. Interestingly, the risk model and immune risk model are both independent prognostic risk factors. Therefore, a nomogram combined risk score, immune risk score with clinical information which is meaningful in univariate and multivariate Cox regression analysis is established to predict the overall survival (OS) of COAD patients. In general, the signature consisted of 15 pyroptosis-related lncRNAs and was proved to be associated with the immune landscape of COAD patients.
Collapse
Affiliation(s)
- Fada Xia
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, China
| | - Yuanliang Yan
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, China
| | - Cong Shen
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|