1
|
Hasan M, Lei Z, Akter M, Iqbal Z, Usaila F, Ramkrishnan AS, Li Y. Chemogenetic activation of astrocytes promotes remyelination and restores cognitive deficits in visceral hypersensitive rats. iScience 2023; 26:105840. [PMID: 36619970 PMCID: PMC9812719 DOI: 10.1016/j.isci.2022.105840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Using a well-established chronic visceral hypersensitivity (VH) rat model, we characterized the decrease of myelin basic protein, reduced number of mature oligodendrocytes (OLs), and hypomyelination in the anterior cingulate cortex (ACC). The results of rat gambling test showed impaired decision-making, and the results of electrophysiological studies showed desynchronization in the ACC to basolateral amygdala (BLA) neural circuitry. Astrocytes release various factors that modulate oligodendrocyte progenitor cell proliferation and myelination. Astrocytic Gq-modulation through expression of hM3Dq facilitated oligodendrocyte progenitor cell proliferation and OL differentiation, and enhanced ACC myelination in VH rats. Activating astrocytic Gq rescued impaired decision-making and desynchronization in ACC-BLA. These data indicate that ACC hypomyelination is an important component of impaired decision-making and network desynchronization in VH. Astrocytic Gq activity plays a significant role in oligodendrocyte myelination and decision-making behavior in VH. Insights from these studies have potential for interventions in myelin-related diseases such as chronic pain-associated cognitive disorders.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Mastura Akter
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Faeeqa Usaila
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Lee BH, Kim HY, Kim HK. Neuro-Plastic Mechanisms of Pain and Addiction. Int J Mol Sci 2022; 23:ijms231810793. [PMID: 36142705 PMCID: PMC9501028 DOI: 10.3390/ijms231810793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence:
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hee Kee Kim
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
3
|
Lei Z, Xie L, Li CH, Lam YY, Ramkrishnan AS, Fu Z, Zeng X, Liu S, Iqbal Z, Li Y. Chemogenetic Activation of Astrocytes in the Basolateral Amygdala Contributes to Fear Memory Formation by Modulating the Amygdala–Prefrontal Cortex Communication. Int J Mol Sci 2022; 23:ijms23116092. [PMID: 35682767 PMCID: PMC9181030 DOI: 10.3390/ijms23116092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
The basolateral amygdala (BLA) is one of the key brain areas involved in aversive learning, especially fear memory formation. Studies of aversive learning in the BLA have largely focused on neuronal function, while the role of BLA astrocytes in aversive learning remains largely unknown. In this study, we manipulated the BLA astrocytes by expressing the Gq-coupled receptor hM3q and discovered that astrocytic Gq modulation during fear conditioning promoted auditorily cued fear memory but did not affect less stressful memory tasks or induce anxiety-like behavior. Moreover, chemogenetic activation of BLA astrocytes during memory retrieval had no effect on fear memory expression. In addition, astrocytic Gq activation increased c-Fos expression in the BLA and the medial prefrontal cortex (mPFC) during fear conditioning, but not in the home cage. Combining these results with retrograde virus tracing, we found that the activity of mPFC-projecting BLA neurons showed significant enhancement after astrocytic Gq activation during fear conditioning. Electrophysiology recordings showed that activating astrocytic Gq in the BLA promoted spike-field coherence and phase locking percentage, not only within the BLA but also between the BLA and the mPFC. Finally, direct chemogenetic activation of mPFC-projecting BLA neurons during fear conditioning enhanced cued fear memory. Taken together, our data suggest that astrocytes in the BLA may contribute to aversive learning by modulating amygdala–mPFC communication.
Collapse
Affiliation(s)
- Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Li Xie
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
| | - Cheuk Hin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Yuk Yan Lam
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Zhongqi Fu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Xianlin Zeng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Shu Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (L.X.); (A.S.R.); (Z.F.); (S.L.); (Z.I.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (C.H.L.); (Y.Y.L.); (X.Z.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
4
|
Wen J, Xu Y, Yu Z, Zhou Y, Wang W, Yang J, Wang Y, Bai Q, Li Z. The cAMP Response Element- Binding Protein/Brain-Derived Neurotrophic Factor Pathway in Anterior Cingulate Cortex Regulates Neuropathic Pain and Anxiodepression Like Behaviors in Rats. Front Mol Neurosci 2022; 15:831151. [PMID: 35401106 PMCID: PMC8987281 DOI: 10.3389/fnmol.2022.831151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 01/24/2023] Open
Abstract
Neuropathic pain is often accompanied by anxiety and depression-like manifestations. Many studies have shown that alterations in synaptic plasticity in the anterior cingulate cortex (ACC) play a critical role, but the specific underlying mechanisms remain unclear. Previously, we showed that cAMP response element-binding protein (CREB) in the dorsal root ganglion (DRG) acts as a transcription factor contributing to neuropathic pain development. At the same time, brain-derived neurotrophic factor (BDNF), as important targets of CREB, is intricate in neuronal growth, differentiation, as well as the establishment of synaptic plasticity. Here, we found that peripheral nerve injury activated the spinal cord and ACC, and silencing the ACC resulted in significant relief of pain sensitivity, anxiety, and depression in SNI rats. In parallel, the CREB/BDNF pathway was activated in the spinal cord and ACC. Central specific knockdown and peripheral non-specific inhibition of CREB reversed pain sensitivity and anxiodepression induced by peripheral nerve injury. Consequently, we identified cingulate CREB/BDNF as an assuring therapeutic method for treating neuropathic pain as well as related anxiodepression.
Collapse
Affiliation(s)
- Jing Wen
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaowei Xu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhixiang Yu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Zhou
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenting Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjie Yang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Bai,
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Zhisong Li,
| |
Collapse
|