1
|
Tunbridge MJ, Luo X, Thomson AW. Negative Vaccination Strategies for Promotion of Transplant Tolerance. Transplantation 2024; 108:1715-1729. [PMID: 38361234 PMCID: PMC11265982 DOI: 10.1097/tp.0000000000004911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organ transplantation requires the use of immunosuppressive medications that lack antigen specificity, have many adverse side effects, and fail to induce immunological tolerance to the graft. The safe induction of tolerance to allogeneic tissue without compromising host responses to infection or enhancing the risk of malignant disease is a major goal in transplantation. One promising approach to achieve this goal is based on the concept of "negative vaccination." Vaccination (or actively acquired immunity) involves the presentation of both a foreign antigen and immunostimulatory adjuvant to the immune system to induce antigen-specific immunity. By contrast, negative vaccination, in the context of transplantation, involves the delivery of donor antigen before or after transplantation, together with a "negative adjuvant" to selectively inhibit the alloimmune response. This review will explore established and emerging negative vaccination strategies for promotion of organ or pancreatic islet transplant tolerance. These include donor regulatory myeloid cell infusion, which has progressed to early-phase clinical trials, apoptotic donor cell infusion that has advanced to nonhuman primate models, and novel nanoparticle antigen-delivery systems.
Collapse
Affiliation(s)
- Matthew J. Tunbridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Wang YC, Chen RF, Liu KF, Chen WY, Lee CC, Kuo YR. Adipose-derived stem cell modulate tolerogenic dendritic cell-induced T cell regulation is correlated with activation of Notch-NFκB signaling. Cytotherapy 2024; 26:890-898. [PMID: 38625070 DOI: 10.1016/j.jcyt.2024.03.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) are recognized for their potential immunomodulatory properties. In the immune system, tolerogenic dendritic cells (DCs), characterized by an immature phenotype, play a crucial role in inducing regulatory T cells (Tregs) and promoting immune tolerance. Notch1 signaling has been identified as a key regulator in the development and function of DCs. However, the precise involvement of Notch1 pathway in ASC-mediated modulation of tolerogenic DCs and its impact on immune modulation remain to be fully elucidated. This study aims to investigate the interplay between ASCs and DCs, focusing the role of Notch1 signaling and downstream pathways in ASC-modulated tolerogenic DCs. METHODS Rat bone marrow-derived myeloid DCs were directly co-cultured with ASCs to generate ASC-treated DCs (ASC-DCs). Notch signaling was inhibited using DAPT, while NFκB pathways were inhibited by NEMO binding domain peptide and si-NIK. Flow cytometry assessed DC phenotypes. Real-time quantitative PCR, Western blotting and immunofluorescence determined the expression of Notch1, Jagged1 and the p52/RelB complex in ASC- DCs. RESULTS Notch1 and Jagged1 were highly expressed on both DCs and ASCs. ASC-DCs displayed significantly reduced levels of CD80, CD86 and MHC II compared to mature DCs. Inhibiting the Notch pathway with DAPT reversed the dedifferentiation effects. The percentage of induced CD25+/FOXP3+/CD4+ Tregs decreased when ASC-DCs were treated with DAPT (inhibition of the Notch pathway) and si-NIK (inhibition of the non-canonical NFκB pathway). CONCLUSIONS ASCs induce DC tolerogenicity by inhibiting maturation and promoting downstream Treg generation, involving the Notch and NFκB pathways. ASC-induced tolerogenic DCs can be a potential immunomodulatory tool for clinical application.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Rong-Fu Chen
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Keng-Fan Liu
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Yu Chen
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Chun Lee
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine, and Cell Therapy Research Center; Department of Surgery, Kaohsiung Ta-Tong Municipal Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; SingHealth Duke-NUS Musculoskeletal Sciences Academic Clinical Programme, Singapore.
| |
Collapse
|
3
|
Nakayama K, Tetsu H, Nishijo T, Yuki T, Miyazawa M. Tolerogenic phenotype of dendritic cells is induced after hapten sensitization followed by attenuated contact hypersensitivity response in atopic dermatitis model NC/Nga mice. Biochem Biophys Res Commun 2023; 678:24-32. [PMID: 37611349 DOI: 10.1016/j.bbrc.2023.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis (AD) are common inflammatory diseases. We previously reported attenuated contact hypersensitivity (CHS) responses in AD model mice using 2,4-dinitrofluorobenzene, reflecting clinical experiments. However, previous studies have not addressed the commonality of findings across haptens and mechanisms focused on dendritic cells (DCs). Thus, this study evaluated CHS responses to fluorescein isothiocyanate (FITC) and DC migration and maturation in the sensitization phase of CHS in AD. CHS responses to FITC were compared between NC/Nga mice without and with AD induction (non-AD and AD mice, respectively). T-cell responses and DC migration and maturation after FITC-induced sensitization were examined in the draining lymph nodes of non-AD and AD mice. AD mice demonstrated reduced CHS responses to FITC under decreased T-cell proliferation following sensitization and interferon-γ production by hapten-specific T cells compared with non-AD mice. In addition, the number of FITC+CD11c+MHC class IIhigh migratory DCs 24 h after FITC sensitization was comparable between non-AD and AD mice. However, FITC+CD11c+MHC class IIhigh migratory DCs in AD mice exhibited lower expression levels of CD80 and CD86 and higher expression levels of PD-L1 and mRNA of transforming growth factor beta than non-AD mice. These findings suggest that attenuated CHS responses may be hapten-independent and the induction of the tolerogenic phenotype of hapten-bearing DCs can contribute to reduced T-cell proliferation after sensitization and CHS responses in AD.
Collapse
Affiliation(s)
- Kanako Nakayama
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan.
| | - Hiroe Tetsu
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Masaaki Miyazawa
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| |
Collapse
|
4
|
Lin G, Wang J, Yang YG, Zhang Y, Sun T. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance. Front Bioeng Biotechnol 2023; 11:1242126. [PMID: 37877041 PMCID: PMC10593475 DOI: 10.3389/fbioe.2023.1242126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Dendritic cells (DCs) are the major specialized antigen-presenting cells (APCs), play a key role in initiating the body's immune response, maintain the balance of immunity. DCs can also induce immune tolerance by rendering effector T cells absent and anergy, and promoting the expansion of regulatory T cells. Induction of tolerogenic DCs has been proved to be a promising strategy for the treatment of autoimmune diseases, organ transplantation, and allergic diseases by various laboratory researches and clinical trials. The development of nano-delivery systems has led to advances in situ modulation of the tolerance phenotype of DCs. By changing the material composition, particle size, zeta-potential, and surface modification of nanoparticles, nanoparticles can be used for the therapeutic payloads targeted delivery to DCs, endowing them with great potential in the induction of immune tolerance. This paper reviews how nano-delivery systems can be modulated for targeted delivery to DCs and induce immune tolerance and reviews their potential in the treatment of autoimmune diseases, organ transplantation, and allergic diseases.
Collapse
Affiliation(s)
- Guojiao Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| |
Collapse
|
5
|
Wang Y, Sun P, Hao X, Cao D, Liu J, Zhang D. Decreased DIO3OS Expression Predicts Poor Prognosis in Hepatocellular Carcinoma and is Associated with Immune Infiltration. Biochem Genet 2023; 61:1791-1806. [PMID: 36802306 DOI: 10.1007/s10528-023-10345-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Hepatocellular carcinoma has become one of the most shared cancers in the whole world because of its high morbidity, poor survival rate, and low recovery rate. LncRNA DIO3 opposite strand upstream RNA (DIO3OS) has been reported to be obviously important in several human cancers, while its biological function in hepatocellular carcinoma (HCC) remains unclear. Here, DIO3OS gene expression data and clinical information of HCC patients were extracted from the Cancer Genome Atlas (TCGA) database and the university of California Santa Cruz (UCSC) Xena database. In our study, the Wilcoxon rank sum test was used to compare DIO3OS expression between healthy individuals and HCC patients. It was found that patients with HCC had significantly lower DIO3OS expression than healthy individuals. Furthermore, Kaplan-Meier curves and Cox regression analysis showed that high DIO3OS expression tended to predict better prognosis and higher survival rate in HCC patients. In addition, the gene set enrichment analysis (GSEA) assay was used to annotate the biological function of DIO3OS. It was found that DIO3OS was significantly correlated with immune invasion in HCC. This was also aided by the subsequent ESTIMATE assay. Our study provides a novel biomarker and therapeutic strategy for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China
| | - Ping Sun
- Department of Immunology, Weifang Medical University, Weifang, 261053, Shandong Province, China
| | - Xinping Hao
- Department of Intensive Care Unit, Weifang Traditional Chinese Medicine Hospital, Weifang, 261041, Shandong Province, China
| | - Daihong Cao
- Dpartment of Pathology, Shanxi Traditional Chinese Medicine Hospital, Taiyuan, 030000, Shanxi Province, China
| | - Jiangyue Liu
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| | - Daijuan Zhang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| |
Collapse
|
6
|
Liu X, Yu P, Xu Y, Wang Y, Chen J, Tang F, Hu Z, Zhou J, Liu L, Qiu W, Ye Y, Jia Y, Yao W, Long J, Zeng Z. Metformin induces tolerogenicity of dendritic cells by promoting metabolic reprogramming. Cell Mol Life Sci 2023; 80:283. [PMID: 37688662 PMCID: PMC10492886 DOI: 10.1007/s00018-023-04932-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Dendritic cells (DCs) can mediate immune responses or immune tolerance depending on their immunophenotype and functional status. Remodeling of DCs' immune functions can develop proper therapeutic regimens for different immune-mediated diseases. In the immunopathology of autoimmune diseases (ADs), activated DCs notably promote effector T-cell polarization and exacerbate the disease. Recent evidence indicates that metformin can attenuate the clinical symptoms of ADs due to its anti-inflammatory properties. Whether and how the therapeutic effects of metformin on ADs are associated with DCs remain unknown. In this study, metformin was added to a culture system of LPS-induced DC maturation. The results revealed that metformin shifted DC into a tolerant phenotype, resulting in reduced surface expression of MHC-II, costimulatory molecules and CCR7, decreased levels of proinflammatory cytokines (TNF-α and IFN-γ), increased level of IL-10, upregulated immunomodulatory molecules (ICOSL and PD-L) and an enhanced capacity to promote regulatory T-cell (Treg) differentiation. Further results demonstrated that the anti-inflammatory effects of metformin in vivo were closely related to remodeling the immunophenotype of DCs. Mechanistically, metformin could mediate the metabolic reprogramming of DCs through FoxO3a signaling pathways, including disturbing the balance of fatty acid synthesis (FAS) and fatty acid oxidation (FAO), increasing glycolysis but inhibiting the tricarboxylic acid cycle (TAC) and pentose phosphate pathway (PPP), which resulted in the accumulation of fatty acids (FAs) and lactic acid, as well as low anabolism in DCs. Our findings indicated that metformin could induce tolerance in DCs by reprogramming their metabolic patterns and play anti-inflammatory roles in vitro and in vivo.
Collapse
Affiliation(s)
- Xianmei Liu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Peng Yu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Yujun Xu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Yun Wang
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Jin Chen
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Fuzhou Tang
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Zuquan Hu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Jing Zhou
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Lina Liu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Wei Qiu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Yuannong Ye
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Yi Jia
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People's Republic of China.
| | - Jinhua Long
- Department of Head & Neck, Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province/Engineering Center of Cellular Immunotherapy in Guizhou Province, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China.
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
7
|
Li JSY, Robertson H, Trinh K, Raghubar AM, Nguyen Q, Matigian N, Patrick E, Thomson AW, Mallett AJ, Rogers NM. Tolerogenic dendritic cells protect against acute kidney injury. Kidney Int 2023; 104:492-507. [PMID: 37244471 DOI: 10.1016/j.kint.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Ischemia reperfusion injury is a common precipitant of acute kidney injury that occurs following disrupted perfusion to the kidney. This includes blood loss and hemodynamic shock, as well as during retrieval for deceased donor kidney transplantation. Acute kidney injury is associated with adverse long-term clinical outcomes and requires effective interventions that can modify the disease process. Immunomodulatory cell therapies such as tolerogenic dendritic cells remain a promising tool, and here we tested the hypothesis that adoptively transferred tolerogenic dendritic cells can limit kidney injury. The phenotypic and genomic signatures of bone marrow-derived syngeneic or allogeneic, Vitamin-D3/IL-10-conditioned tolerogenic dendritic cells were assessed. These cells were characterized by high PD-L1:CD86, elevated IL-10, restricted IL-12p70 secretion and a suppressed transcriptomic inflammatory profile. When infused systemically, these cells successfully abrogated kidney injury without modifying infiltrating inflammatory cell populations. They also provided protection against ischemia reperfusion injury in mice pre-treated with liposomal clodronate, suggesting the process was regulated by live, rather than reprocessed cells. Co-culture experiments and spatial transcriptomic analysis confirmed reduced kidney tubular epithelial cell injury. Thus, our data provide strong evidence that peri-operatively administered tolerogenic dendritic cells have the ability to protect against acute kidney injury and warrants further exploration as a therapeutic option. This technology may provide a clinical advantage for bench-to-bedside translation to affect patient outcomes.
Collapse
Affiliation(s)
- Jennifer S Y Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Sydney Medical School, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Harry Robertson
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Arti M Raghubar
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Matigian
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia; Queensland Cyber Infrastructure Foundation Bioinformatics, Brisbane, Queensland, Australia
| | - Ellis Patrick
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J Mallett
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia; Department of Renal Medicine, Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Sydney Medical School, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
8
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8:207. [PMID: 37211559 DOI: 10.1038/s41392-023-01452-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Macrophages exist in various tissues, several body cavities, and around mucosal surfaces and are a vital part of the innate immune system for host defense against many pathogens and cancers. Macrophages possess binary M1/M2 macrophage polarization settings, which perform a central role in an array of immune tasks via intrinsic signal cascades and, therefore, must be precisely regulated. Many crucial questions about macrophage signaling and immune modulation are yet to be uncovered. In addition, the clinical importance of tumor-associated macrophages is becoming more widely recognized as significant progress has been made in understanding their biology. Moreover, they are an integral part of the tumor microenvironment, playing a part in the regulation of a wide variety of processes including angiogenesis, extracellular matrix transformation, cancer cell proliferation, metastasis, immunosuppression, and resistance to chemotherapeutic and checkpoint blockade immunotherapies. Herein, we discuss immune regulation in macrophage polarization and signaling, mechanical stresses and modulation, metabolic signaling pathways, mitochondrial and transcriptional, and epigenetic regulation. Furthermore, we have broadly extended the understanding of macrophages in extracellular traps and the essential roles of autophagy and aging in regulating macrophage functions. Moreover, we discussed recent advances in macrophages-mediated immune regulation of autoimmune diseases and tumorigenesis. Lastly, we discussed targeted macrophage therapy to portray prospective targets for therapeutic strategies in health and diseases.
Collapse
Affiliation(s)
- Shanze Chen
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Abdullah F U H Saeed
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, China
| | - Qiong Jiang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haizhao Xu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Sanseverino I, Rinaldi AO, Purificato C, Cortese A, Millefiorini E, Gauzzi MC. 1,25(OH) 2D3 Differently Modulates the Secretory Activity of IFN-DC and IL4-DC: A Study in Cells from Healthy Donors and MS Patients. Int J Mol Sci 2023; 24:ijms24076717. [PMID: 37047690 PMCID: PMC10094841 DOI: 10.3390/ijms24076717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immune mechanisms play an essential role in driving multiple sclerosis (MS) and altered trafficking and/or activation of dendritic cells (DC) were observed in the central nervous system and cerebrospinal fluid of MS patients. Interferon β (IFNβ) has been used as a first-line therapy in MS for almost three decades and vitamin D deficiency is a recognized environmental risk factor for MS. Both IFNβ and vitamin D modulate DC functions. Here, we studied the response to 1,25-dihydoxyvitamin D3 (1,25(OH)2D3) of DC obtained with IFNβ/GM-CSF (IFN-DC) compared to classically derived IL4-DC, in three donor groups: MS patients free of therapy, MS patients undergoing IFNβ therapy, and healthy donors. Except for a decreased CCL2 secretion by IL4-DC from the MS group, no major defects were observed in the 1,25(OH)2D3 response of either IFN-DC or IL4-DC from MS donors compared to healthy donors. However, the two cell models strongly differed for vitamin D receptor level of expression as well as for basal and 1,25(OH)2D3-induced cytokine/chemokine secretion. 1,25(OH)2D3 up-modulated IL6, its soluble receptor sIL6R, and CCL5 in IL4-DC, and down-modulated IL10 in IFN-DC. IFN-DC, but not IL4-DC, constitutively secreted high levels of IL8 and of matrix-metalloproteinase-9, both down-modulated by 1,25(OH)2D3. DC may contribute to MS pathogenesis, but also provide an avenue for therapeutic intervention. 1,25(OH)2D3-induced tolerogenic DC are in clinical trial for MS. We show that the protocol of in vitro DC differentiation qualitatively and quantitatively affects secretion of cytokines and chemokines deeply involved in MS pathogenesis.
Collapse
Affiliation(s)
- Isabella Sanseverino
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Cristina Purificato
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, Sapienza University of Rome, 00161 Rome, Italy
| | | | | |
Collapse
|
10
|
Zhao Y, Du J, Shen X. Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond. Front Immunol 2023; 14:1157537. [PMID: 37006306 PMCID: PMC10063857 DOI: 10.3389/fimmu.2023.1157537] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major negative regulators in tumor microenvironment (TME) due to their potent immunosuppressive capacity. MDSCs are the products of myeloid progenitor abnormal differentiation in bone marrow, which inhibits the immune response mediated by T cells, natural killer cells and dendritic cells; promotes the generation of regulatory T cells and tumor-associated macrophages; drives the immune escape; and finally leads to tumor progression and metastasis. In this review, we highlight key features of MDSCs biology in TME that are being explored as potential targets for tumor immunotherapy. We discuss the therapies and approaches that aim to reprogram TME from immunosuppressive to immunostimulatory circumstance, which prevents MDSC immunosuppression activity; promotes MDSC differentiation; and impacts MDSC recruitment and abundance in tumor site. We also summarize current advances in the identification of rational combinatorial strategies to improve clinical efficacy and outcomes of cancer patients, via deeply understanding and pursuing the mechanisms and characterization of MDSCs generation and suppression in TME.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Junfeng Du
- Department of General Surgery, The 7th Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| |
Collapse
|
11
|
Efficacy of topically applied rapamycin-loaded redox-sensitive nanocarriers in a human skin/T cell co-culture model. Int Immunopharmacol 2023; 117:109903. [PMID: 36848792 DOI: 10.1016/j.intimp.2023.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Rapamycin, also known as Sirolimus, is a promising anti-proliferative drug, but its therapeutic use for the topical treatment of inflammatory, hyperproliferative skin disorders is limited by insufficient penetration rates due to its high molecular weight (MW of 914.172 g/mol) and high lipophilicity. We have shown that core multi-shell (CMS) nanocarriers sensitive to oxidative environment can improve drug delivery to the skin. In this study, we investigated the mTOR inhibitory activity of these oxidation-sensitive CMS (osCMS) nanocarrier formulations in an inflammatory ex vivo human skin model. In this model, features of inflamed skin were introduced by treating the ex vivo tissue with low-dose serine protease (SP) and lipopolysaccharide (LPS), while phorbol 12-myristate 13-acetate and ionomycin were used to stimulate IL-17A production in the co-cultured SeAx cells. Furthermore, we tried to elucidate the effects of rapamycin on single cell populations isolated from skin (keratinocytes, fibroblast) as well as on SeAx cells. Further, we measured possible effects of the rapamycin formulations on dendritic cell (DC) migration and activation. The inflammatory skin model enabled the assessment of biological readouts at both the tissue and T cell level. All investigated formulations successfully delivered rapamycin across the skin as revealed by reduced IL-17A levels. Nevertheless, only the osCMS formulations reached higher anti-inflammatory effects in the skin compared to the control formulations with a significant downregulation of mTOR activity. These results indicate that osCMS formulations could help to establish rapamycin, or even other drugs with similar physico-chemical properties, in topical anti-inflammatory therapy.
Collapse
|
12
|
Xu W, Wan S, Xie B, Song X. Novel potential therapeutic targets of alopecia areata. Front Immunol 2023; 14:1148359. [PMID: 37153617 PMCID: PMC10154608 DOI: 10.3389/fimmu.2023.1148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Alopecia areata (AA) is a non-scarring hair loss disorder caused by autoimmunity. The immune collapse of the hair follicle, where interferon-gamma (IFN-γ) and CD8+ T cells accumulate, is a key factor in AA. However, the exact functional mechanism remains unclear. Therefore, AA treatment has poor efficacy maintenance and high relapse rate after drug withdrawal. Recent studies show that immune-related cells and molecules affect AA. These cells communicate through autocrine and paracrine signals. Various cytokines, chemokines and growth factors mediate this crosstalk. In addition, adipose-derived stem cells (ADSCs), gut microbiota, hair follicle melanocytes, non-coding RNAs and specific regulatory factors have crucial roles in intercellular communication without a clear cause, suggesting potential new targets for AA therapy. This review discusses the latest research on the possible pathogenesis and therapeutic targets of AA.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiuzu Song,
| |
Collapse
|
13
|
The Potential Clinical Application of Induced Tolerogenic Macrophages. Transplantation 2023; 107:23-24. [PMID: 35876367 DOI: 10.1097/tp.0000000000004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, Wei X. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med 2022; 12:e1036. [PMID: 36178087 PMCID: PMC9523675 DOI: 10.1002/ctm2.1036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Emerging evidence provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), and rare anti-PF therapeutic method has promising effect in its treatment. Rho-associated coiled-coil kinases (ROCK) inhibition significantly ameliorates bleomycin-induced PF and decreases macrophage infiltration, but the mechanism remains unclear. We established bleomycin and radiation-induced PF to identify the activity of WXWH0265, a newly designed unselective ROCK inhibitor in regulating macrophages. METHODS Bleomycin-induced PF was induced by intratracheal instillation and radiation-induced PF was induced by bilateral thoracic irradiation. Histopathological techniques (haematoxylin and eosin, Masson's trichrome and immunohistochemistry) and hydroxyproline were used to evaluate PF severity. Western blot, quantitative real-time reverse transcription-polymerase chain reaction and flow cytometry were performed to explore the underlying mechanisms. Bone marrow-derived macrophages (BMDMs) were used to verify their therapeutic effect. Clodronate liposomes were applied to deplete macrophages and to identify the therapeutic effect of WXWH0265. RESULTS Therapeutic administration of ROCK inhibitor ameliorates bleomycin-induced PF by inhibiting M2 macrophages polarisation. ROCK inhibitor showed no significant anti-fibrotic effect in macrophages-depleted mice. Treatment with WXWH0265 demonstrated superior protection effect in bleomycin-induced PF compared with positive drugs. In radiation-induced PF, ROCK inhibitor effectively ameliorated PF. Fibroblasts co-cultured with supernatant from various M2 macrophages phenotypes revealed that M2 macrophages stimulated by interleukin-4 promoted extracellular matrix production. Polarisation of M2 macrophages was inhibited by ROCK inhibitor treatment in vitro. The p-signal transducer and activator of transcription 3 (STAT3) in lung tissue and BMDMs was significantly decreased in PF in vivo and vitro after treated with ROCK inhibitors. CONCLUSION Inhibiting ROCK could significantly attenuate bleomycin- and radiation-induced PF by regulating the macrophages polarisation via phosphorylation of STAT3. WXWH0265 is a kind of efficient unselective ROCK inhibitor in ameliorating PF. Furthermore, the results provide empirical evidence that ROCK inhibitor, WXWH0265 is a potential drug to prevent the development of PF.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| |
Collapse
|
15
|
Shuai Z, Zheng S, Wang K, Wang J, Leung PSC, Xu B. Reestablish immune tolerance in rheumatoid arthritis. Front Immunol 2022; 13:1012868. [PMID: 36248797 PMCID: PMC9561630 DOI: 10.3389/fimmu.2022.1012868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease. Despite the wide use of conventional synthetic, targeted and biologic disease modifying anti-rheumatic drugs (DMARDs) to control its radiological progress, nearly all DMARDs are immunologically non-selective and do not address the underlying immunological mechanisms of RA. Patients with RA often need to take various DMARDs long-term or even lifelong and thus, face increased risks of infection, tumor and other adverse reactions. It is logical to modulate the immune disorders and restore immune balance in patients with RA by restoring immune tolerance. Indeed, approaches based on stem cell transplantation, tolerogenic dendritic cells (tolDCs), and antigen-based tolerogenic vaccination are under active investigation, and some have already transformed from wet bench research to clinical investigation during the last decade. Among them, clinical trials on stem cell therapy, especially mesenchymal stem cells (MSCs) transplantation are most investigated and followed by tolDCs in RA patients. On the other hand, despite active laboratory investigations on the use of RA-specific peptide-/protein-based tolerogenic vaccines for T cell, clinical studies on RA patients are much limited. Overall, the preliminary results of these clinical studies are promising and encouraging, demonstrating their safety and effectiveness in the rebalancing of T cell subsets; particular, the recovery of RA-specific Treg with increasing anti-inflammatory cytokines and reduced proinflammatory cytokines. Future studies should focus on the optimization of transplanted stem cells, the preparation of tolDCs, and tolerogenic vaccines with RA-specific protein or peptide, including their dosage, course, and route of administration with well-coordinated multi-center randomized clinical control researches. With the progress of experimental and clinical studies, generating and restoring RA-specific immune tolerance may bring revolutionary changes to the clinical management of RA in the near future.
Collapse
Affiliation(s)
- Ziqiang Shuai
- Department of Sports Injury and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kang Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Bin Xu, ; Patrick S. C. Leung, ; Jian Wang,
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Bin Xu, ; Patrick S. C. Leung, ; Jian Wang,
| | - Bin Xu
- Department of Sports Injury and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Bin Xu, ; Patrick S. C. Leung, ; Jian Wang,
| |
Collapse
|
16
|
Huang XY, Jin ZK, Dou M, Zheng BX, Zhao XR, Feng Q, Feng YM, Duan XL, Tian PX, Xu CX. Sinomenine promotes differentiation of induced pluripotent stem cells into immature dendritic cells with high induction of immune tolerance. World J Stem Cells 2022; 14:599-615. [PMID: 36157915 PMCID: PMC9453268 DOI: 10.4252/wjsc.v14.i8.599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Immature dendritic cells (imDCs) play an important role in the induction of donor-specific transplant immunotolerance. However, these cells have limitations, such as rapid maturation and a short lifespan in vivo. In previous studies, induced pluripotent stem cells (iPSCs) differentiated into imDCs, and sinomenine (SN) was used to inhibit the maturation of imDCs.
AIM To study the capacity of SN to maintain iPSC-derived imDCs (SN-iPSCs-imDCs) in an immature state and the mechanism by which SN-iPSCs-imDCs induce immunotolerance.
METHODS In this study, mouse iPSCs were induced to differentiate into imDCs in culture medium without or with SN (iPSCs-imDCs and SN-iPSCs-imDCs). The imDC-related surface markers, endocytotic capacity of fluorescein isothiocyanate-Dextran and apoptosis were analyzed by flow cytometry. The effects of iPSCs-imDCs and SN-iPSCs-imDCs on T-cell stimulatory function, and regulatory T (Treg) cell proliferative function in vitro were analyzed by mixed lymphocyte reaction. Cytokine expression was detected by ELISA. The apoptosis-related proteins of iPSCs-DCs and SN-iPSCs-DCs were analyzed by western blotting. The induced immunotolerance of SN-iPSCs-DCs was evaluated by treating recipient Balb/c skin graft mice. Statistical evaluation of graft survival was performed using Kaplan–Meier curves.
RESULTS Both iPSCs-imDCs and SN-iPSCs-imDCs were successfully obtained, and their biological characteristics and ability to induce immunotolerance were compared. SN-iPSCs-imDCs exhibited higher CD11c levels and lower CD80 and CD86 levels compared with iPSCs-imDCs. Reduced major histocompatibility complex II expression, worse T-cell stimulatory function, higher Treg cell proliferative function and stronger endocytotic capacity were observed with SN-iPSCs-imDCs (P < 0.05). The levels of interleukin (IL)-2, IL-12, interferon-γ in SN-iPSCs-imDCs were lower than those in iPSCs-imDCs, whereas IL-10 and transforming growth factor-β levels were higher (P < 0.05). The apoptosis rate of these cells was significantly higher (P < 0.05), and the expression levels of cleaved caspase3, Bax and cleaved poly(ADP-ribose) polymerase were higher after treatment with lipopolysaccharides, but Bcl-2 was reduced. In Balb/c mice recipients immunized with iPSCs-imDCs or SN-iPSCs-imDCs 7 d before skin grafting, the SN-iPSCs-imDCs group showed lower ability to inhibit donor-specific CD4+ T-cell proliferation (P < 0.05) and a higher capacity to induce CD4+CD25+FoxP3+ Treg cell proliferation in the spleen (P < 0.05). The survival span of C57bl/6 skin grafts was significantly prolonged in immunized Balb/c recipients with a donor-specific pattern.
CONCLUSION This study demonstrated that SN-iPSCs-imDCs have potential applications in vitro and in vivo for induction of immunotolerance following organ transplantation.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi'an 710068, Shaanxi Province, China
| | - Zhan-Kui Jin
- Department of Orthopedics, Shaanxi Provincial People’s Hospital, Xi'an 710068, Shaanxi Province, China
| | - Meng Dou
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Bing-Xuan Zheng
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xiang-Rong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi'an 710068, Shaanxi Province, China
| | - Qing Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi'an 710068, Shaanxi Province, China
| | - Yang-Meng Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi'an 710068, Shaanxi Province, China
| | - Xiang-Long Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Pu-Xun Tian
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Cui-Xiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi'an 710068, Shaanxi Province, China
| |
Collapse
|
17
|
Murphy EP, Crean D. NR4A1-3 nuclear receptor activity and immune cell dysregulation in rheumatic diseases. Front Med (Lausanne) 2022; 9:874182. [PMID: 35935773 PMCID: PMC9354819 DOI: 10.3389/fmed.2022.874182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
The development and progression of immune-mediated rheumatic disease (IMRD) involves dysfunction of innate and adaptive immune cell populations leading to altered responses including inflammasome activation, dysregulated cytokine networks, increased immune cell numbers and multifaceted cell-cell communication. Several rheumatic diseases are further characterized by the presence of autoantibodies, immune complex mediated complement activation and the deficit of peripheral immune tolerance due to reduced regulatory T-lymphocyte cell function. Ultimately, in rheumatic disease the loss in cellular and tissue homeostasis culminates in the advancement of chronic inflammation. The three members of the NR4A subfamily of nuclear receptors are immediate early genes, and act as potent transcriptional responders to changes in the cellular and tissue microenvironment. Subfamily members are rapidly expressed in diseases characterized by inflammation and function to control the differentiation and activity of innate and adaptive immune cells in a cell-type and cell-context specific manner. Rheumatic disease including rheumatoid-, psoriatic-, osteo-arthritis and systemic sclerosis display altered NR4A1-3 activity in controlling immune cell migration and function, production of paracrine signaling molecules, synovial tissue hyperplasia, and regulating cartilage turn-over in vivo. Additionally, NR4A1-3 activities mediate cytokine, prostanoid and growth factor signaling to control angiogenesis, modulate the regulatory functions of mesenchymal stromal cells, alter the activation status of dendritic cells, influence the generation of peripheral myeloid and T-lymphocyte lineages and promote the maintenance of functional regulatory T-cells. Further reports uncover the potential of moderating NR4A 1-3 receptors as therapeutic targets in altering immune tolerance, pathological angiogenesis and controlling inflammation in several models of disease.
Collapse
Affiliation(s)
| | - Daniel Crean
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Retinoic Acid-Containing Liposomes for the Induction of Antigen-Specific Regulatory T Cells as a Treatment for Autoimmune Diseases. Pharmaceutics 2021; 13:pharmaceutics13111949. [PMID: 34834364 PMCID: PMC8620283 DOI: 10.3390/pharmaceutics13111949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
The current treatment of autoimmune and chronic inflammatory diseases entails systemic immune suppression, which is associated with increased susceptibility to infections. To restore immune tolerance and reduce systemic side effects, a targeted approach using tolerogenic dendritic cells (tolDCs) is being explored. tolDCs are characterized by the expression of CD11c, the major histocompatibility complex (MHC)II and low levels of co-stimulatory molecules CD40 and CD86. In this study, tolDCs were generated using a human-proteoglycan-derived peptide (hPG) and all-trans retinoic acid (RA). RA-tolDCs not only display a tolerogenic phenotype but also can induce an antigen-specific regulatory T cell (Treg) response in vitro. However, further analysis showed that RA-tolDCs make up a heterogeneous population of DCs, with only a small proportion being antigen-associated tolDCs. To increase the homogeneity of this population, 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG)-containing liposomes were used to encapsulate the relevant antigen together with RA. These liposomes greatly enhanced the proportion of antigen-associated tolDCs in culture. In addition, in mice, we showed that the liposomal co-delivery of antigen and RA can be a more targeted approach to induce antigen-specific tolerance compared to the injection of RA-tolDCs, and that these liposomes can stimulate the generation of antigen-specific Tregs. This work highlights the importance of the co-delivery of an antigen and immunomodulator to minimize off-target effects and systemic side effects and provides new insights in the use of RA for antigen-specific immunotherapy for autoimmune and chronic inflammatory diseases.
Collapse
|