1
|
Fernández-Calvet A, Matilla-Cuenca L, Izco M, Navarro S, Serrano M, Ventura S, Blesa J, Herráiz M, Alkorta-Aranburu G, Galera S, Ruiz de Los Mozos I, Mansego ML, Toledo-Arana A, Alvarez-Erviti L, Valle J. Gut microbiota produces biofilm-associated amyloids with potential for neurodegeneration. Nat Commun 2024; 15:4150. [PMID: 38755164 PMCID: PMC11099085 DOI: 10.1038/s41467-024-48309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.
Collapse
Affiliation(s)
- Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Leticia Matilla-Cuenca
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Miriam Serrano
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria, HM Hospitales, Madrid, Spain
| | - Maite Herráiz
- Department of Gastroenterology, Clínica Universitaria and Medical School, University of Navarra, Navarra, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Alkorta-Aranburu
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Sergio Galera
- Department of Personalized Medicine, NASERTIC, Government of Navarra, Pamplona, Spain
| | | | - María Luisa Mansego
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain.
| |
Collapse
|
2
|
Lechner SA, Barnett DGS, Gammie SC, Kelm-Nelson CA. Prodromal Parkinson disease signs are predicted by a whole-blood inflammatory transcriptional signature in young Pink1 -/- rats. BMC Neurosci 2024; 25:11. [PMID: 38438964 PMCID: PMC10910737 DOI: 10.1186/s12868-024-00857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Parkinson disease (PD) is the fastest growing neurodegenerative disease. The molecular pathology of PD in the prodromal phase is poorly understood; as such, there are no specific prognostic or diagnostic tests. A validated Pink1 genetic knockout rat was used to model early-onset and progressive PD. Male Pink1-/- rats exhibit progressive declines in ultrasonic vocalizations as well as hindlimb and forelimb motor deficits by mid-to-late adulthood. Previous RNA-sequencing work identified upregulation of genes involved in disease pathways and inflammation within the brainstem and vocal fold muscle. The purpose of this study was to identify gene pathways within the whole blood of young Pink1-/- rats (3 months of age) and to link gene expression to early acoustical changes. To accomplish this, limb motor testing (open field and cylinder tests) and ultrasonic vocalization data were collected, immediately followed by the collection of whole blood and RNA extraction. Illumina® Total RNA-Seq TruSeq platform was used to profile differential expression of genes. Statistically significant genes were identified and Weighted Gene Co-expression Network Analysis was used to construct co-expression networks and modules from the whole blood gene expression dataset as well as the open field, cylinder, and USV acoustical dataset. ENRICHR was used to identify the top up-regulated biological pathways. RESULTS The data suggest that inflammation and interferon signaling upregulation in the whole blood is present during early PD. We also identified genes involved in the dysregulation of ribosomal protein and RNA processing gene expression as well as prion protein gene expression. CONCLUSIONS These data identified several potential blood biomarkers and pathways that may be linked to anxiety and vocalization acoustic parameters and are key candidates for future drug-repurposing work and comparison to human datasets.
Collapse
Affiliation(s)
- Sarah A Lechner
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Medical Sciences Center, University of Wisconsin-Madison, 1300 University Avenue, 416, Madison, WI, 53706, USA
| | - David G S Barnett
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Medical Sciences Center, University of Wisconsin-Madison, 1300 University Avenue, 416, Madison, WI, 53706, USA
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Medical Sciences Center, University of Wisconsin-Madison, 1300 University Avenue, 416, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Liang Y, Zhong G, Ren M, Sun T, Li Y, Ye M, Ma C, Guo Y, Liu C. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease. Neuromolecular Med 2023; 25:471-488. [PMID: 37698835 DOI: 10.1007/s12017-023-08755-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is mainly in middle-aged people and elderly people, and the pathogenesis of PD is complex and diverse. The ubiquitin-proteasome system (UPS) is a master regulator of neural development and the maintenance of brain structure and function. Dysfunction of components and substrates of this UPS has been linked to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Moreover, UPS can regulate α-synuclein misfolding and aggregation, mitophagy, neuroinflammation and oxidative stress to affect the development of PD. In the present study, we review the role of several related E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) on the pathogenesis of PD such as Parkin, CHIP, USP8, etc. On this basis, we summarize the connections and differences of different E3 ubiquitin ligases in the pathogenesis, and elaborate on the regulatory progress of different DUBs on the pathogenesis of PD. Therefore, we can better understand their relationships and provide feasible and valuable therapeutic clues for UPS-related PD treatment research.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yu Guo
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
4
|
Palladino P, Rainetti A, Lettieri M, Pieraccini G, Scarano S, Minunni M. Quantitative Colorimetric Sensing of Carbidopa in Anti-Parkinson Drugs Based on Selective Reaction with Indole-3-Carbaldehyde. SENSORS (BASEL, SWITZERLAND) 2023; 23:9142. [PMID: 38005530 PMCID: PMC10674578 DOI: 10.3390/s23229142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
The quality of life of patients affected by Parkinson's disease is improved by medications containing levodopa and carbidopa, restoring the dopamine concentration in the brain. Accordingly, the affordable quality control of such pharmaceuticals is very important. Here is reported the simple and inexpensive colorimetric quantification of carbidopa in anti-Parkinson drugs by the selective condensation reaction between the hydrazine group from carbidopa and the formyl functional group of selected aldehydes in acidified hydroalcoholic solution. An optical assay was developed by using indole-3-carbaldehyde (I3A) giving a yellow aldazine in EtOH:H2O 1:1 (λmax~415 nm) at 70 °C for 4 h, as confirmed by LC-MS analysis. A filter-based plate reader was used for colorimetric data acquisition, providing superior results in terms of analytical performances for I3A, with a sensitivity ~50 L g-1 and LOD ~0.1 mg L-1 in comparison to a previous study based on vanillin, giving, for the same figures of merit values, about 13 L g-1 and 0.2-0.3 mg L-1, respectively. The calibration curves for the standard solution and drugs were almost superimposable, therefore excluding interference from the excipients and additives, with very good reproducibility (avRSD% 2-4%) within the linear dynamic range (10 mg L-1-50 mg L-1).
Collapse
Affiliation(s)
- Pasquale Palladino
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Alberto Rainetti
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Mariagrazia Lettieri
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Giuseppe Pieraccini
- CISM Mass Spectrometry Centre, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
| | - Simona Scarano
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Maria Minunni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| |
Collapse
|
5
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
6
|
Lechner SA, Barnett DGS, Gammie SC, Kelm-Nelson CA. Prodromal Parkinson disease signs are predicted by a whole-blood inflammatory transcriptional signature in young Pink1-/- rats. RESEARCH SQUARE 2023:rs.3.rs-3269607. [PMID: 37674708 PMCID: PMC10479403 DOI: 10.21203/rs.3.rs-3269607/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Parkinson disease (PD) is the fastest growing neurodegenerative disease. The molecular pathology of PD in the prodromal phase is poorly understood; as such, there are no specific prognostic or diagnostic tests. A validated Pink1 genetic knockout rat was used to model early-onset and progressive PD. Male Pink1-/- rats exhibit progressive declines in ultrasonic vocalizations as well as hindlimb and forelimb motor deficits by mid-to-late adulthood. Previous RNA-sequencing work identified upregulation of genes involved in disease pathways and inflammation within the brainstem and vocal fold muscle. The purpose of this study was to identify gene pathways within the whole blood of young Pink1-/- rats (3 months of age) and to link gene expression to early acoustical changes. To accomplish this, limb motor testing (open field and cylinder tests) and ultrasonic vocalization data were collected, immediately followed by the collection of whole blood and RNA extraction. Illumina® Total RNA-Seq TruSeq platform was used to profile differential expression of genes. Statistically significant genes were identified and Weighted Gene Co-expression Network Analysis was used to construct co-expression networks and modules from the whole blood gene expression dataset as well as the open field, cylinder, and USV acoustical dataset. ENRICHR was used to identify the top up-regulated biological pathways. Results The data suggest that inflammation and interferon signaling upregulation in the whole blood is present during early PD. We also identified genes involved in the dysregulation of ribosomal protein and RNA processing gene expression as well as prion protein gene expression. Conclusions These data identified several potential blood biomarkers and pathways that may be linked to anxiety and vocalization acoustic parameters and are key candidates for future drug-repurposing work and comparison to human datasets.
Collapse
|
7
|
Morelli M, Pinna A. Neurobiology of Parkinson's Disease. Int J Mol Sci 2023; 24:9933. [PMID: 37373081 DOI: 10.3390/ijms24129933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is one of the most rapidly growing neurological disorders [...].
Collapse
Affiliation(s)
- Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Monserrato, 09042 Cagliari, Italy
- National Research Council of Italy (CNR), Neuroscience Institute-Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy (CNR), Neuroscience Institute-Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
8
|
Anselmi C, Caicci F, Bocci T, Guidetti M, Priori A, Giusti V, Levy T, Raveh T, Voskoboynik A, Weissman IL, Manni L. Multiple Forms of Neural Cell Death in the Cyclical Brain Degeneration of A Colonial Chordate. Cells 2023; 12:1041. [PMID: 37048113 PMCID: PMC10093557 DOI: 10.3390/cells12071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Human neuronal loss occurs through different cellular mechanisms, mainly studied in vitro. Here, we characterized neuronal death in B. schlosseri, a marine colonial tunicate that shares substantial genomic homology with mammals and has a life history in which controlled neurodegeneration happens simultaneously in the brains of adult zooids during a cyclical phase named takeover. Using an ultrastructural and transcriptomic approach, we described neuronal death forms in adult zooids before and during the takeover phase while comparing adult zooids in takeover with their buds where brains are refining their structure. At takeover, we found in neurons clear morphologic signs of apoptosis (i.e., chromatin condensation, lobed nuclei), necrosis (swollen cytoplasm) and autophagy (autophagosomes, autolysosomes and degradative multilamellar bodies). These results were confirmed by transcriptomic analyses that highlighted the specific genes involved in these cell death pathways. Moreover, the presence of tubulovesicular structures in the brain medulla alongside the over-expression of prion disease genes in late cycle suggested a cell-to-cell, prion-like propagation recalling the conformational disorders typical of some human neurodegenerative diseases. We suggest that improved understanding of how neuronal alterations are regulated in the repeated degeneration-regeneration program of B. schlosseri may yield mechanistic insights relevant to the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy
| | - Tommaso Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Matteo Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Alberto Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | | | - Tom Levy
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ayelet Voskoboynik
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucia Manni
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Kumari S, Taliyan R, Dubey SK. Comprehensive Review on Potential Signaling Pathways Involving the Transfer of α-Synuclein from the Gut to the Brain That Leads to Parkinson's Disease. ACS Chem Neurosci 2023; 14:590-602. [PMID: 36724408 DOI: 10.1021/acschemneuro.2c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease is the second most prevalent neurological disease after Alzheimer's. Primarily, old age males are more affected than females. The aggregates of oligomeric forms of α-synuclein cause the loss of dopaminergic neurons in the substantia nigra pars compacta. Further, it leads to dopamine shortage in the striatum region. According to recent preclinical studies, environmental factors like pesticides, food supplements, pathogens, etc. enter the body through the mouth or nose and ultimately reach the gut. Further, these factors get accumulated in enteric nervous system which leads to misfolding of α-synuclein gene, and aggregation of this gene results in Lewy pathology in the gut and reaches to the brain through the vagus nerve. This evidence showed a strong bidirectional connection between the gut and the brain, which leads to gastrointestinal problems in Parkinson patients. Moreover, several studies reveal that patients with Parkinson experience more gastrointestinal issues in the early stages of the disease, such as constipation, increased motility, gut inflammation, etc. This review article focuses on the transmission of α-synuclein and the mechanisms involved in the link between the gut and the brain in Parkinson's disease. Also, this review explores the various pathways involved in Parkinson and current therapeutic approaches for the improvement of Parkinson's disease.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science─Pilani, Pilani, 333031 Rajasthan, India
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science─Pilani, Pilani, 333031 Rajasthan, India
| | | |
Collapse
|
10
|
Yang Y, Wang Y, Wang C, Xu X, Liu C, Huang X. Identification of hub genes of Parkinson's disease through bioinformatics analysis. Front Neurosci 2022; 16:974838. [DOI: 10.3389/fnins.2022.974838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and there is still a lack of effective diagnostic and treatment methods. This study aimed to search for hub genes that might serve as diagnostic or therapeutic targets for PD. All the analysis was performed in R software. The expression profile data of PD (number: GSE7621) was acquired from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) associated with PD were screened by the “Limma” package of the R software. Key genes associated with PD were screened by the “WGCNA” package of the R software. Target genes were screened by merging the results of “Limma” and “WGCNA.” Enrichment analysis of target genes was performed by Gene Ontology (GO), Disease Ontology (DO), and Kyoto Enrichment of Genes and Genomes (KEGG). Machine learning algorithms were employed to screen for hub genes. Nomogram was constructed using the “rms” package. And the receiver operating characteristic curve (ROC) was plotted to detect and validate our prediction model sensitivity and specificity. Additional expression profile data of PD (number: GSE20141) was acquired from the GEO database to validate the nomogram. GSEA was used to determine the biological functions of the hub genes. Finally, RPL3L, PLEK2, PYCRL, CD99P1, LOC100133130, MELK, LINC01101, and DLG3-AS1 were identified as hub genes of PD. These findings can provide a new direction for the diagnosis and treatment of PD.
Collapse
|
11
|
Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn from Cell-Based In Vitro Assays? Int J Mol Sci 2022; 23:ijms231911527. [PMID: 36232835 PMCID: PMC9570106 DOI: 10.3390/ijms231911527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the hyperphosphorylation and deposition of tau proteins in the brain. In Alzheimer’s disease, and other related tauopathies, the pattern of tau deposition follows a stereotypical progression between anatomically connected brain regions. Increasing evidence suggests that tau behaves in a “prion-like” manner, and that seeding and spreading of pathological tau drive progressive neurodegeneration. Although several advances have been made in recent years, the exact cellular and molecular mechanisms involved remain largely unknown. Since there are no effective therapies for any tauopathy, there is a growing need for reliable experimental models that would provide us with better knowledge and understanding of their etiology and identify novel molecular targets. In this review, we will summarize the development of cellular models for modeling tau pathology. We will discuss their different applications and contributions to our current understanding of the “prion-like” nature of pathological tau.
Collapse
|
12
|
Kovač V, Čurin Šerbec V. Prion Protein: The Molecule of Many Forms and Faces. Int J Mol Sci 2022; 23:ijms23031232. [PMID: 35163156 PMCID: PMC8835406 DOI: 10.3390/ijms23031232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein most abundantly found in the outer membrane of neurons. Due to structural characteristics (a flexible tail and structured core), PrPC interacts with a wide range of partners. Although PrPC has been proposed to be involved in many physiological functions, only peripheral nerve myelination homeostasis has been confirmed as a bona fide function thus far. PrPC misfolding causes prion diseases and PrPC has been shown to mediate β-rich oligomer-induced neurotoxicity in Alzheimer’s and Parkinson’s disease as well as neuroprotection in ischemia. Upon proteolytic cleavage, PrPC is transformed into released and attached forms of PrP that can, depending on the contained structural characteristics of PrPC, display protective or toxic properties. In this review, we will outline prion protein and prion protein fragment properties as well as overview their involvement with interacting partners and signal pathways in myelination, neuroprotection and neurodegenerative diseases.
Collapse
|
13
|
Autophagy in α-Synucleinopathies-An Overstrained System. Cells 2021; 10:cells10113143. [PMID: 34831366 PMCID: PMC8618716 DOI: 10.3390/cells10113143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Alpha-synucleinopathies comprise progressive neurodegenerative diseases, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). They all exhibit the same pathological hallmark, which is the formation of α-synuclein positive deposits in neuronal or glial cells. The aggregation of α-synuclein in the cell body of neurons, giving rise to the so-called Lewy bodies (LBs), is the major characteristic for PD and DLB, whereas the accumulation of α-synuclein in oligodendroglial cells, so-called glial cytoplasmic inclusions (GCIs), is the hallmark for MSA. The mechanisms involved in the intracytoplasmic inclusion formation in neuronal and oligodendroglial cells are not fully understood to date. A possible mechanism could be an impaired autophagic machinery that cannot cope with the high intracellular amount of α-synuclein. In fact, different studies showed that reduced autophagy is involved in α-synuclein aggregation. Furthermore, altered levels of different autophagy markers were reported in PD, DLB, and MSA brains. To date, the trigger point in disease initiation is not entirely clear; that is, whether autophagy dysfunction alone suffices to increase α-synuclein or whether α-synuclein is the pathogenic driver. In the current review, we discuss the involvement of defective autophagy machinery in the formation of α-synuclein aggregates, propagation of α-synuclein, and the resulting neurodegenerative processes in α-synucleinopathies.
Collapse
|