1
|
Salama Y, Munakata S, Osada T, Takahashi S, Hattori K, Heissig B. Heparin-binding EGF-like growth factor via miR-126 controls tumor formation/growth and the proteolytic niche in murine models of colorectal and colitis-associated cancers. Cell Death Dis 2024; 15:753. [PMID: 39419989 PMCID: PMC11487245 DOI: 10.1038/s41419-024-07126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
MicroRNAs, including the tumor-suppressor miR-126 and the oncogene miR-221, regulate tumor formation and growth in colitis-associated cancer (CAC) and colorectal cancer (CRC). This study explores the impact of the epithelial cytokine heparin-binding epidermal growth factor (HB-EGF) and its receptor epidermal growth factor receptor (EGFR) on the pathogenesis of CAC and CRC, particularly in the regulation of microRNA-driven tumor growth and protease expression. In murine models of CRC and CAC, lack of miR-126 and elevated miR-221 expression in colonic tissues enhanced tumor formation and growth. MiR-126 downregulation in colon cells established a pro-tumorigenic proteolytic niche by targeting HB-EGF-active metalloproteinase-7, -9 (MMP7/MMP9), disintegrin, and metalloproteinase domain-containing protein 9, and modulating chemokine-mediated recruitment of HB-EGF-loaded inflammatory cells. Mechanistically, downregulation of HB-EGF and EGFR in the colon suppressed miR-221 and enhanced miR-126 expression via activating enhancer-binding protein 2 alpha. Reintroducing miR-126 reduced tumor development and HB-EGF expression. Combining miR-126 reintroduction, which targets specific HB-EGF-active proteases but not ADAM17, with MMP inhibitors like Batimastat or Marimastat effectively suppressed tumor growth. This combination normalized protease expression and balanced miR-126 and miR-221 levels in developing and growing tumors. These findings demonstrate that suppressing HB-EGF and EGFR1 shifts the balance from oncogenic miR-221 to tumor-suppressive miR-126 action. Consequently, normalizing miR-126 expression could open new avenues for treating patients with CAC and CRC, and this normalization is intertwined with the anticancer efficacy of MMP inhibitors.
Collapse
Grants
- JP22F21773 MEXT | Japan Society for the Promotion of Science (JSPS)
- Sukhtian Group/ Palestine
- This work was supported partly by JSPS KAKENHI Grant Numbers JP17K09941(KH), JP24K11549 (KH), a grant from The Japanese Society of Hematology Research Grant (KH), Nakatani Foundation (KH), Terumo Life Science Foundation (KH), Taiju Life Social Welfare Foundation (KH), Okinaka Memorial Institute for Medical Research (KH), Grants from the Society of Iodine Science (KH), Radiation effects association (KH) and International Joint Usage/Research Center, the Institute of Medical Science, the University of Tokyo (KH).
Collapse
Affiliation(s)
- Yousef Salama
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, PO Box 7, Nablus, Palestine
| | - Shinya Munakata
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University, Urayasu Hospital, Urayasu, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Beate Heissig
- Division of Stem Cell Dynamics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Department of Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
2
|
Vaca Meza ET, Vasquez-Kool J, Costilla Sánchez NI, Vieira A, Rodrigues RAF, Sartoratto A, Flores Granados ADP, Marin Tello CL, Ruiz ALTG. Chemical composition and anti-proliferative activity of essential oils from some medicinal plants from Cachicadán, Región La Libertad, Perú. Nat Prod Res 2024; 38:2145-2150. [PMID: 37470420 DOI: 10.1080/14786419.2023.2238114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
This study evaluated the chemical composition and anti-proliferative activity of essential oils (EOs) obtained by hydrodistillation from seven medicinal plants from Cachicadán, La Libertad Región, Perú. Limonene (0.64 to 44.43%) and linalool (0.36 to 2.12%) were identified in all EOs by gas chromatography coupled to mass spectrometry analysis. The major components (relative intensity ≥ 10%) were cis-dihydro carvone, carvone, and cis-piperitone epoxide for Minthostachys mollis leaves; β-pinene, limonene, and ledol for Lepechinia heteromorpha leaves; limonene, neral, and geranial for Aloysia citriodora, both leaves and flowers; α-pinene, and limonene for Myrcianthes myrsinoides leaves; and α-pinene, β-myrcene, and (E)-β-Ocimene for Dalea carthagenensis leaves. Constituted by (Z)-β-ocimene, dihydrotagetone, (Z)-tagetone, and car-3-en-2-one, EO of Tagetes minuta leaves induced an irreversible cytostatic effect against MCF-7 human breast tumor cells. Further in vivo studies must be carried out to establish the safe and efficient dose of T. minuta EO as adjuvant treatment in oncological therapies.
Collapse
Affiliation(s)
- Eveleny Tirsa Vaca Meza
- Laboratory of Research in Physiology of Food Metabolism, National University of Trujillo, Trujillo, Perú
| | - Jorge Vasquez-Kool
- Department of Health, Human and Life Sciences, Shaw University, Raleigh, North Carolina, USA
| | | | - Amandio Vieira
- Nutrition and metabolism research Laboratory, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | | | - Adilson Sartoratto
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas - UNICAMP, Paulínia, SP, Brazil
| | - Angela Del Pilar Flores Granados
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas - UNICAMP, Paulínia, SP, Brazil
| | - Carmen Luisa Marin Tello
- Laboratory of Research in Physiology of Food Metabolism, National University of Trujillo, Trujillo, Perú
| | - Ana Lucia Tasca Gois Ruiz
- Laboratory of Phytochemistry, Pharmacology and Experimental Toxicology, LAFTEx, Faculty of Pharmaceutical Sciences, FCF, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
3
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
4
|
Ferreira RC, do Nascimento YM, de Araújo Loureiro PB, Martins RX, de Souza Maia ME, Farias DF, Tavares JF, Gonçalves JCR, da Silva MS, Sobral MV. Chemical Composition, In Vitro Antitumor Effect, and Toxicity in Zebrafish of the Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae). Biomolecules 2023; 13:1439. [PMID: 37892120 PMCID: PMC10604947 DOI: 10.3390/biom13101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography-mass spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma, cervical, colorectal, and leukemias), as well as non-tumor keratinocyte lines using the MTT assay. The effect of CBEO on the production of Reactive Oxygen Species (ROS) was evaluated by DCFH-DA assay, and a protection assay using the antioxidant N-acetyl-L-cysteine (NAC) was also performed. Moreover, the CBEO toxicity in the zebrafish model was assessed. The majority of the CBEO compound was (Z)-2-lachnophyllum ester (57.24%). The CBEO exhibited selectivity towards SK-MEL-28 melanoma cells (half maximal inhibitory concentration, IC50 = 18.65 ± 1.16 µg/mL), and induced a significant increase in ROS production. In addition, the CBEO's cytotoxicity against SK-MEL-28 cells was reduced after pretreatment with NAC. Furthermore, after 96 h of exposure, 1.5 µg/mL CBEO induced death of all zebrafish embryos. Non-lethal effects were observed after exposure to 0.50-1.25 µg/mL CBEO. Additionally, significant alterations in the activity of enzymes associated with oxidative stress in zebrafish larvae were observed. These results provide evidence that CBEO has a significant in vitro antimelanoma effect by increasing ROS production and moderate embryotoxicity in zebrafish.
Collapse
Affiliation(s)
- Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Yuri Mangueira do Nascimento
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Paulo Bruno de Araújo Loureiro
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Xavier Martins
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Maria Eduarda de Souza Maia
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
5
|
In Vitro Antimelanoma Properties of Verbena officinalis Fractions. Molecules 2022; 27:molecules27196329. [PMID: 36234866 PMCID: PMC9571856 DOI: 10.3390/molecules27196329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Verbena officinalis is commonly used in traditional medicine to treat many ailments. Extracts of this plant are therapeutic agents for the potential treatment of different diseases, including colorectal and liver cancers, but have not been explored for their anti-melanoma potential so far. The goal of the current work was to prepare a methanolic extract and fractionate it using hexane, chloroform, ethyl acetate, butanol, and acetone to get semi-purified products. These semi-purified fractions were studied for their potency against melanoma cell lines. The three potent fractions (HA, VO79, and EA3) demonstrated 50% inhibition concentration (IC50) values as low as 2.85 µg/mL against the LOX IMVI cell line. All three fractions showed similar potency in inhibiting the growth of the B16 cells, a murine melanoma cell line. Based on high-resolution mass spectrometry (HRMS) data, for the first time, we report on lupulone A from this plant. LC-MS data also indicated the presence of hedergonic acid, serjanic acid, and other compounds in V. officinalis extracts.
Collapse
|