1
|
Cherik IT, Divsalar A, Abdolhamid Angaji S. Design, Synthesis, and Toxicity Evaluation of the Green Synthesized Oxaliplatin Nanoparticles Using Ginger Extract against Colorectal Cancer Cells. IRANIAN JOURNAL OF SCIENCE 2024; 48:1411-1423. [DOI: 10.1007/s40995-024-01678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/01/2024] [Indexed: 01/05/2025]
|
2
|
Pandey SK, Kumar S, Singh S, Patel AK, Gond MK, Acharya A, Bharty MK. Synthesis, structural characterisation, and anticancer potential of mono and dinuclear Pd(II) complexes of N-(2-pyridyl)thiourea. Dalton Trans 2024. [PMID: 39606833 DOI: 10.1039/d4dt02614d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cancer is a prominent global cause of mortality. Palladium complexes have the potential to serve as effective anticancer and pharmacological agents, offering a viable alternative to platinum medications. This work focused on the development of a new thiolato-bridged dinuclear [Pd(M3MPyThU)Cl]2 and mononuclear palladium [Pd(M3MPyThU)2] complexes containing 1-methyl-3-(3-methylpyridin-2-yl) thiourea (HM3MPyThU) ligand. The prepared ligand and complexes have been fully characterised by various spectroscopic and single-crystal crystallographic data. The ligand and complexes were further examined for their anticancer activities against the HT-29 (human colon) and MCF-7 (human breast) cancer cells along with the standard drug cisplatin, and the outcome suggests that tested compounds have a better cytotoxic response against HT-29 cells. The order of anticancer activity was found as [Pd(M3MPyThU)Cl]2 > cisplatin > [Pd(M3MPyThU)2] > HM3MPyThU. The complex [Pd(M3MPyThU)Cl]2 demonstrated potent cytotoxic effects against HT-29 cells with an IC50 value of 10 ± 3.3 μM. The comparison of the anticancer activity of the described complexes with previous reports on HT-29 cells suggests that the described complexes have better anticancer activity than previously reported complexes. Further assays were performed for [Pd(M3MPyThU)Cl]2 to gain insights into the mechanism of cell death and found that reduced mitochondrial membrane potential and increased ROS production, highlighting mitochondrial-dependent apoptosis as the major mechanism for tumour cell death. Additionally, [Pd(M3MPyThU)Cl]2 was found to be more selective compared to cisplatin since it exhibited decreased toxicity towards healthy cells (HEK-293).
Collapse
Affiliation(s)
| | - Sandeep Kumar
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Swati Singh
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, India.
| | - Anand Kumar Patel
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Mannu Kumar Gond
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, India.
| | - Arbind Acharya
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Manoj Kumar Bharty
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Cirri D, Di Leo R, Chiaverini L, Tolbatov I, Marrone A, Messori L, Pratesi A, La Mendola D, Marzo T. Non-Medical Applications of Inorganic Medicines. A Switch Based on Mechanistic Knowledge. Chemistry 2024; 30:e202402647. [PMID: 39158114 DOI: 10.1002/chem.202402647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi-technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal-based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well-known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic-mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin-1 (AP-1).
Collapse
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124, Pisa, Italy
| | - Riccardo Di Leo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Iogann Tolbatov
- Department of Physics and Astronomy, University of Padova, Via F. Marzolo 8, 35131, Padova, Italy
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Luigi Messori
- Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124, Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| |
Collapse
|
4
|
Jiang M, Li W, Liang J, Pang M, Li S, Xu G, Zhu M, Liang H, Zhang Z, Yang F. Developing a Palladium(II) Agent to Overcome Multidrug Resistance and Metastasis of Liver Tumor by Targeted Multiacting on Tumor Cell, Inactivating Cancer-Associated Fibroblast and Activating Immune Response. J Med Chem 2024; 67:16296-16310. [PMID: 39238096 DOI: 10.1021/acs.jmedchem.4c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To targeted overcome the multidrug resistance (MDR) and metastasis of liver tumors, we proposed to develop a palladium (Pd) agent based on a specific residue of human serum albumin (HSA) for multiacting on tumor cell and other components in the tumor microenvironment. To this end, a series of Pd(II) 2-acetylpyridine thiosemicarbazone compounds were optimized to obtain a Pd(II) compound (5b) with significant cytotoxicity against HepG2/ADM cells. Subsequently, we constructed a HSA-5b complex delivery system and revealed the structural mechanism of HSA delivering 5b. Importantly, 5b/HSA-5b effectively inhibited the growth and metastasis of multidrug resistant liver tumors, and HSA enhanced the targeting ability of 5b and reduced its side effects in vivo. Furthermore, we confirmed the mechanisms of 5b/HSA-5b integrating to overcome MDR and metastasis of liver tumors: multiacting on cancer cell, activating immune response, and inactivating cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Min Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| |
Collapse
|
5
|
Behroozi R, Dehghanian E, Mansouri-Torshizi H. Investigation of antitumor activity and albumin interaction of new sulfosalicylate-based complex by spectroscopic and computational approaches. LUMINESCENCE 2024; 39:e4869. [PMID: 39192755 DOI: 10.1002/bio.4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
In the present study, the drug delivery by albumin protein and antiproliferetaive activity of new transition metal complex i.e., [Pd (phen)(SSA)] (where phen and SSA represent 1, 10 phenanthroline and sulfosalicylic acid, respectively) was investigated. DFT (density functional theory) calculations were conducted at B3LYP level with 6-311G(d,p)/aug-ccpVTZ-PP basis set for the purpose of geometry optimization, frontier molecular orbital (FMO) analysis, molecular electrostatic potential (MEP), and natural bond orbital (NBO) analysis. Experimental tests were conducted to preliminarily assess the lipophilicity and antitumor activity of the metal complex, resulting in promising findings. In-silico prediction was accomplished to assess its toxicity and bioavailability. To evaluate the binding of the newly formed complex with DNA (which results in halting the cell cycle) or serum albumin protein (drug transporter to the tissues), in-silico molecular modeling was employed. Experimental results (spectroscopic and non-spectroscopic) showed that the new compound interacts with each biomolecule via hydrogen bond and van der Waals interactions. Molecular docking demonstrated the binding of this complex to the DNA groove and site I of BSA occurs mainly through hydrogen bonds. Molecular dynamics simulation confirmed the interactions between [Pd (phen)(SSA)] with DNA or BSA through stable hydrogen bonds.
Collapse
Affiliation(s)
- Roghayeh Behroozi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
6
|
Paderni D, Voccia M, Macedi E, Formica M, Giorgi L, Caporaso L, Fusi V. A combined solid state, solution and DFT study of a dimethyl-cyclen-Pd(II) complex. Dalton Trans 2024; 53:14300-14314. [PMID: 39133309 DOI: 10.1039/d4dt01791a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A new palladium(II) complex containing the previously synthesized 4,10-bis[(3-hydroxy-4-pyron-2-yl)methyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane ligand maltonis was prepared and characterized both in solution and in the solid state. Hirshfeld surface and energy framework analyses were also performed. Because maltonis already showed antineoplastic activity, the complexation of Pd(II), chosen as an alternative to Pt(II), was investigated to study its possible biological activity. UV-vis and NMR studies confirmed the formation and stability of the complex in aqueous solution at physiological pH. X-ray diffraction data revealed a structure where the Pd(II) ion is lodged in the dimethyl-cyclen cavity, with maltol rings facing each other (closed shape) even if they are not involved in the coordination. DFT analysis was performed in order to understand the most stable shape of the complex. In view of evaluating its possible bioactive conformation, the DFT study suggested a slight energetic preference for the closed one. The resulting closed complex was stabilized in the X-ray structure by intermolecular interactions that replace the intramolecular interactions present in the optimized complex. According to the DFT calculated formation energies, notwithstanding its rarity, the Pd(II) complex of maltonis is the thermodynamically preferred one among analogous complexes containing different metal ions (Pt(II), Co(II), and Cu(II)). Finally, to study its possible biological activity, the interaction between the Pd(II) complex of maltonis and nucleosides was evaluated through NMR and DFT calculations, revealing a possible interaction with purines via the maltol moieties.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Maria Voccia
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| | - Lucia Caporaso
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore 2-4, 61029 Urbino, Italy.
| |
Collapse
|
7
|
Bortolamiol E, Mauceri M, Piccolo R, Cavarzerani E, Demitri N, Donati C, Gandin V, Brezar SK, Kamensek U, Cemazar M, Canzonieri V, Rizzolio F, Visentin F, Scattolin T. Palladium(II)-Indenyl Complexes Bearing N-Heterocyclic Carbene (NHC) Ligands as Potent and Selective Metallodrugs toward High-Grade Serous Ovarian Cancer Models. J Med Chem 2024; 67:14414-14431. [PMID: 39119630 DOI: 10.1021/acs.jmedchem.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In this study, we synthesized novel Pd(II)-indenyl complexes using various N-heterocyclic carbene (NHC) ligands, including chelating NHC-picolyl, NHC-thioether, and diNHC ligands, and two monodentate NHCs. Transmetalation reactions between a Pd(II)-indenyl precursor and silver-NHC complexes were generally employed, except for chelating diNHC derivatives, which required direct reaction with bisimidazolium salts and potassium carbonate. Characterization included NMR, HRMS analysis, and single-crystal X-ray diffraction. In vitro on five ovarian cancer cell lines showed notable cytotoxicity, with IC50 values in the micro- and submicromolar range. Some compounds exhibited intriguing selectivity for cancer cells due to higher tumor cell uptake. Mechanistic studies revealed that monodentate NHCs induced mitochondrial damage while chelating ligands caused DNA damage. One chelating NHC-picolyl ligand showed promising cytotoxicity and selectivity in high-grade serous ovarian cancer models, supporting its consideration for preclinical study.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Matteo Mauceri
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Rachele Piccolo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Enrico Cavarzerani
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Chiara Donati
- Dipartimento di Scienze del Farmaco, Universita di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, 34100 Trieste, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.), IRCCS via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.), IRCCS via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
8
|
Luković D, Franich AA, Živković MD, Rajković S, Stojanović B, Gajović N, Jurišević M, Pavlović S, Simović Marković B, Jovanović M, Stojanović BS, Pavlović R, Jovanović I. Biological Evaluation of Dinuclear Platinum(II) Complexes with Aromatic N-Heterocycles as Bridging Ligands. Int J Mol Sci 2024; 25:8525. [PMID: 39126093 PMCID: PMC11312983 DOI: 10.3390/ijms25158525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The history of effective anti-cancer medications begins with the discovery of cisplatin's anti-cancer properties. Second-generation analogue, carboplatin, with a similar range of effectiveness, made progress in improving these drugs with fewer side effects and better solubility. Renewed interest in platinum-based drugs has been increasing in the past several years. These developments highlight a revitalized enthusiasm and ongoing exploration in platinum chemotherapy based on the series of dinuclear platinum(II) complexes, [{Pt(L)Cl}2(μ-bridging ligand)]2+, which have been synthesized and evaluated for their biological activities. These complexes are designed to target various cancerous conditions, exhibiting promising antitumor, antiproliferative, and apoptosis-inducing activities. The current work aims to shed light on the potential of these complexes as next-generation platinum-based therapies, highlighting their enhanced efficacy and reduced side effects, which could revolutionize the approach to chemotherapy.
Collapse
Affiliation(s)
- Desimir Luković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Andjela A. Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia; (A.A.F.); (S.R.)
| | - Marija D. Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia; (A.A.F.); (S.R.)
| | - Bojan Stojanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Nevena Gajović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Milena Jurišević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia;
| | - Slađana Pavlović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Marina Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| | - Bojana S. Stojanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Radiša Pavlović
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia;
| | - Ivan Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia; (D.L.); (N.G.); (M.J.); (S.P.); (B.S.M.); (M.J.); (B.S.S.); (I.J.)
| |
Collapse
|
9
|
Sun Z, Han J, Xu J, Song W, Cui Y, Liu Y, Yang L, Meng X, Huang J, Gao Q, Liu S. Discovery of the Next-Generation Platinum-Based Anticancer Agents for Combating Oxaliplatin-Induced Drug Resistance. J Med Chem 2024; 67:10190-10210. [PMID: 38845105 DOI: 10.1021/acs.jmedchem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Oxaliplatin-based chemotherapy has proven to be one of the most effective treatments for advanced or metastatic colorectal cancer. However, increasing clinical resistance to oxaliplatin poses unprecedented challenges for both patients and clinicians. Despite extensive efforts to combat this issue, to date, no new molecules have been discovered that can successfully replace oxaliplatin. With the aim of developing a new generation of Pt(II)-based anticancer agents in response to the challenges of oxaliplatin-induced drug resistance, we performed a systematic screening of new Pt(II)-complexes with a quantitative structure-activity relationship (QSAR) study based on their antiresistance activity against oxaliplatin-resistant colon cancer cells. The results revealed that both the structure and chirality of the chelating ligand had a significant impact on the antiresistance properties of the Pt(II)-complexes. Our study culminated in the identification of chiral R-binaphthyldiamine-ligated Pt(II)-malonatoglycoconjugates that can completely counteract oxaliplatin resistance with excellent in vitro and in vivo potency.
Collapse
Affiliation(s)
- Ziru Sun
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jianbin Han
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Jun Xu
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Weijie Song
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, P. R. China
| | - Yujun Cui
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Transplantation Center, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin 300192, P. R. China
| | - Yang Liu
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Liu Yang
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Xiaoqi Meng
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jie Huang
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Qingzhi Gao
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shengnan Liu
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| |
Collapse
|
10
|
Forooghi K, Amiri Rudbari H, Stagno C, Iraci N, Cuevas-Vicario JV, Kordestani N, Schirmeister T, Efferth T, Omer EA, Moini N, Aryaeifar M, Blacque O, Azadbakht R, Micale N. Structural features and antiproliferative activity of Pd(II) complexes with halogenated ligands: a comparative study between Schiff base and reduced Schiff base complexes. Dalton Trans 2024; 53:10571-10591. [PMID: 38855858 DOI: 10.1039/d4dt00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In order to investigate the structural features and antiproliferative activity of Pd(II) complexes containing halogenated ligands with different flexibility, several Schiff base and reduced Schiff base Pd(II) complexes, namely X1X2PicPd, X1X2PyPd, X1X2Pic(R)Pd, and X1X2Py(R)Pd (where X1 = X2 = Cl, Br and I; Pic: 2-picolylamine; Py = 2-(2-pyridyl)ethylamine), were synthesized and characterized by spectroscopic methods and, in the case of Br2PyPd, Cl2Py(R)Pd and ClBrPy(R)Pd, also by X-ray crystallography. The results of the X-ray crystallography showed that in both series of complexes the Pd(II) ion has a distorted square-planar geometry, although the coordination modes of the two ligands are different. In the Schiff base-type complexes the ligand acts as a tridentate chelate with NN'O donor atoms, whereas in the reduced Schiff base-type complexes the ligand acts as a bidentate chelate with NN' donor atoms. In both series of complexes, the chloride ions occupy the residual coordination sites of the Pd(II) ion. TD-DFT calculations were performed for a better understanding of the UV-Vis spectra. From these calculations it was found that the signal appearing at ∼400 nm in the complexes with reduced Schiff base ligands (X1X2Pic(R)Pd and X1X2Py(R)Pd) is mainly due to a HOMO → LUMO transition, while for the Schiff base complex ClBrPyPd the signal is due to a HOMO → LUMO+1 transition. For the complex I2PicPd, combinations of HOMO-4 → LUMO and HOMO-2 → LUMO transitions were found to be responsible for that signal. In regard to the biological activity profile, all complexes were first investigated as proteasome inhibitors by fluorometric methods. From these enzymatic assays, it emerged that they are good inhibitors with IC50 values in the low-micromolar range and that their inhibitory activity is strictly related to the presence of the metal ion. Subsequently they were also subjected to cell-based assays (the resazurin method) to assess their antiproliferative properties by using two leukemic cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000. In this test they displayed IC50 values in the sub-micromolar and low-micromolar range determined for a selected metal complex (Br2Pic(R)Pd) and ligand (Cl2Pic(R)), respectively. Moreover, docking studies were performed on the two expected molecular targets, i.e. proteasome and DNA, to shed light on the mechanisms of action of these types of Pd(II) complexes.
Collapse
Affiliation(s)
- Kimia Forooghi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - José V Cuevas-Vicario
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Nazanin Kordestani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, staudinger Weg 5, 55128 Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, staudinger Weg 5, 55128 Mainz, Germany
| | - Nakisa Moini
- Department of Inorganic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Mahnaz Aryaeifar
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Reza Azadbakht
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.
| |
Collapse
|
11
|
Machado I, Gambino D. Metallomics: An Essential Tool for the Study of Potential Antiparasitic Metallodrugs. ACS OMEGA 2024; 9:15744-15752. [PMID: 38617611 PMCID: PMC11007724 DOI: 10.1021/acsomega.3c10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
Metallomics is an emerging area of omics approaches that has grown enormously in the past few years. It integrates research related to metals in biological systems, in symbiosis with genomics and proteomics. These omics approaches can provide in-depth insights into the mechanisms of action of potential metallodrugs, including their physiological metabolism and their molecular targets. Herein, we review the most significant advances concerning cellular uptake and subcellular distribution assays of different potential metallodrugs with activity against Trypanosma cruzi, the protozoan parasite that causes Chagas disease, a pressing health problem in high-poverty areas of Latin America. Furthermore, the first multiomics approaches including metallomics, proteomics, and transcriptomics for the comprehensive study of potential metallodrugs with anti-Trypanosoma cruzi activity are described.
Collapse
Affiliation(s)
- Ignacio Machado
- Área
Química Analítica, Facultad de Química, Área Química
Inorgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Dinorah Gambino
- Área
Química Analítica, Facultad de Química, Área Química
Inorgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
12
|
Ragheb MA, Soliman MH, Abdelhamid IA, Shoukry MM, Haukka M, Ragab MS. Anticancer behaviour of 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione)-based palladium(II) complex and its DNA, BSA binding propensity and DFT study. J Inorg Biochem 2024; 253:112488. [PMID: 38325158 DOI: 10.1016/j.jinorgbio.2024.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report the synthesis and biological evaluation of [Pd(L)(OH2)Cl] complex (where L = 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione) as a novel promising anticancer candidate. The complex was characterized by single-crystal X-ray diffraction and other various spectroscopic techniques. Besides, the optimized structure was determined through DFT calculations revealing that the coordination geometry of [Pd(L)(OH2)Cl] complex is square planar. The binding propensity of [Pd(L)(OH2)Cl] complex with DNA and BSA was assessed by the spectrophotometric method. The antimicrobial profile of the ligand and its [Pd(L)(OH2)Cl] complex was screened against clinically important bacterial strains. [Pd(L)(OH2)Cl] complex showed promising activity against these microorganisms. Pd(L)(OH2)Cl] complex exhibited a potent antiproliferative potential compared to its ligand against different human cancer cells (A549, HCT116, MDA-MB-231, and HepG2) with less toxic effect against normal cells (WI-38). Additionally, [Pd(L)(OH2)Cl] complex exerted its anticancer effects against the most responsive cells (HCT116 cells; IC50 = 11 ± 1 μM) through suppressing their colony-forming capabilities and triggering apoptosis and cell cycle arrest at S phase. Quantitative PCR analysis revealed a remarkable upregulation of the mRNA expression level of p53 and caspase-3 by 4.8- and 5.9-fold, respectively, relative to control. Remarkable binding properties and non-covalent interactions between L and its [Pd(L)(OH2)Cl] complex with the binding sites of different receptors including CDK2, MurE ligase, DNA, and BSA were established using molecular docking. Based on our results, [Pd(L)(OH2)Cl] complex is an intriguing candidate for future investigations as a potential anticancer drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | | | - Mohamed M Shoukry
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
13
|
Alinaghi M, Mokarram P, Ahmadi M, Bozorg-Ghalati F. Biosynthesis of palladium, platinum, and their bimetallic nanoparticles using rosemary and ginseng herbal plants: evaluation of anticancer activity. Sci Rep 2024; 14:5798. [PMID: 38461314 PMCID: PMC10925055 DOI: 10.1038/s41598-024-56275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In this research, palladium (II) and platinum (II), as well as their bimetallic nanoparticles were synthesized using medicinal plants in an eco-friendly manner. Rosemary and Ginseng extracts were chosen due to their promising anticancer potential. The synthesized nanoparticles underwent characterization through FT-IR spectroscopy, DLS, XRD, EDX, SEM, and TEM techniques. Once the expected structures were confirmed, the performance of these nanoparticles, which exhibited an optimal size, was evaluated as potential anticancer agents through in vitro method on colon cancer cell lines (Ls180, SW480). MTT assay studies showed that the synthesized nanoparticles induced cell death. Moreover, real-time PCR was employed to investigate autophagy markers and the effect of nanoparticles on the apoptosis process, demonstrating a significant effect of the synthesized compounds in this regard.
Collapse
Affiliation(s)
- Moloud Alinaghi
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mazaher Ahmadi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Farzaneh Bozorg-Ghalati
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Pereira THR, de Moura TR, Santos MRM, Zamarioli LDS, Erustes AG, Smaili SS, Pereira GJS, Godoy Netto AVD, Bincoletto C. Palladium (II) compounds containing oximes as promising antitumor agents for the treatment of osteosarcoma: An in vitro and in vivo comparative study with cisplatin. Eur J Med Chem 2024; 264:116034. [PMID: 38103541 DOI: 10.1016/j.ejmech.2023.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.
Collapse
Affiliation(s)
- Thales Hebert Regiani Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Michele Rosana Maia Santos
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Lucas Dos Santos Zamarioli
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Adolfo G Erustes
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Soraya S Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Kozlov VA, Aleksanyan DV, Churusova SG, Spiridonov AA, Rybalkina EY, Gutsul EI, Aksenova SA, Korlyukov AA, Peregudov AS, Klemenkova ZS. Unsymmetrical Pd(II) Pincer Complexes with Benzothiazole and Thiocarbamate Flanking Units: Expedient Solvent-Free Synthesis and Anticancer Potential. Int J Mol Sci 2023; 24:17331. [PMID: 38139160 PMCID: PMC10744248 DOI: 10.3390/ijms242417331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Driven by the growing threat of cancer, many research efforts are directed at developing new chemotherapeutic agents, where the central role is played by transition metal complexes. The proper ligand design serves as a key factor to unlock the anticancer potential of a particular metal center. Following a recent trend, we have prepared unsymmetrical pincer ligands that combine benzothiazole and thiocarbamate donor groups. These compounds are shown to readily undergo direct cyclopalladation, affording the target S,C,N-type Pd(II) pincer complexes both in solution and in the absence of a solvent. The solid-phase strategy provided the complexes in an efficient and ecologically friendly manner. The resulting palladacycles are fully characterized using nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy and, in one case, by single-crystal X-ray diffraction (XRD). The solvent-free reactions are additionally analyzed by powder XRD. The pincer complexes exhibit remarkable cytotoxicity against several solid and blood cancer cell lines, including human colorectal carcinoma (HCT116), breast cancer (MCF7), prostate adenocarcinoma (PC3), chronic myelogenous leukemia (K562), multiple plasmacytoma (AMO1), and acute lymphoblastic leukemia (H9), with the dimethylamino-substituted derivative being particularly effective. The latter also induced an appreciable level of apoptosis in both parental and doxorubicin-resistant cells K562 and K562/iS9, vindicating the high anticancer potential of this type of palladacycles.
Collapse
Affiliation(s)
- Vladimir A. Kozlov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Diana V. Aleksanyan
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
- Scientific Laboratory “Advanced Composite Materials and Technologies”, Plekhanov Russian University of Economics, Stremyannyi per. 36, 117997 Moscow, Russia
| | - Svetlana G. Churusova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Aleksandr A. Spiridonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Ekaterina Yu. Rybalkina
- N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe shosse 23, 115478 Moscow, Russia;
| | - Evgenii I. Gutsul
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Svetlana A. Aksenova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Alexander S. Peregudov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Zinaida S. Klemenkova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| |
Collapse
|
16
|
Eslami Moghadam M, Rezaeisadat M, Shahryari E, Mansouri-Torshizi H, Heydari M. Biological interaction of Pt complex with imidazole derivative as an anticancer compound with DNA: Experimental and theoretical studies. Int J Biol Macromol 2023; 249:126097. [PMID: 37543270 DOI: 10.1016/j.ijbiomac.2023.126097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
This investigation is applied to find out interesting information on DNA binding mode with Pt(II) derivative of two N, N bidentate ligands in treating cancer. Thus, one new water-soluble platinum complex with FIP and phen with a new formula of [Pt(phen)(FIP)](NO3)2 was prepared and specified. DFT data can be used to evaluate geometry parameters. Based on the ADMET prediction, this complex can be considered a drug-like agent. Cytotoxicity property was evaluated against some human cancerous MCF7, A549, and HCT116 cell lines. Accumulation of Pt complex, cisplatin, and oxaliplatin in each cancerous cell was determined, which is probably related to their lipophilicity and solubility properties. The binding mode of the complex to ct-DNA was investigated by fluorescence spectroscopy, circular dichroism, and molecular docking simulation. The viscosity of DNA by different concentrations of EB and Pt complex titration shows Pt complex interacts with DNA via groove binding like the spectroscopic binding result. In the MD study, DNA helix, RMSD, and RMSF analysis showed that DNA stability decreased and that the majority of residues left the initial state. DNA increased residual deviations and flexibility are linked to an increase in its gyratory radius, which is consistent with the findings of the experiments.
Collapse
Affiliation(s)
| | | | - Elaheh Shahryari
- Department of Physical Sciences, Emporia State University, Campus Box, 4030, KS, USA
| | | | - Maryam Heydari
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
17
|
Tian R, Li Y, Shen X, Li Y. Targeting PTBP1 blocks glutamine metabolism to improve the cisplatin sensitivity of hepatocarcinoma cells through modulating the mRNA stability of glutaminase. Open Med (Wars) 2023; 18:20230756. [PMID: 37724122 PMCID: PMC10505300 DOI: 10.1515/med-2023-0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 09/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequently diagnosed malignancy with a high mortality rate. Cisplatin (CDDP) is a widely applied anti-cancer drug. However, a large population of liver cancer patients developed CDDP resistance. The polypyrimidine tract binding protein (PTBP1) is an RNA-binding protein involving in progressions of diverse cancers. Here we report PTBP1 was significantly upregulated in liver tumors and cell lines. Silencing PTBP1 effectively sensitized HCC cells to CDDP. From the established CDDP-resistant HCC cell line (HepG2 CDDP Res), we observed that CDDP-resistant cells were more sensitive to CDDP under low glutamine supply compared with that in HCC parental cells. CDDP-resistant HCC cells displayed elevated glutamine metabolism rate. Consistently, PTBP1 promotes glutamine uptake and the glutamine metabolism key enzyme, glutaminase (GLS) expression. Bioinformatics analysis predicted that the 3'-UTR of GLS mRNA contained PTBP1 binding motifs which were further validated by RNA immunoprecipitation and RNA pull-down assays. PTBP1 associated with GLS 3'-UTR to stabilize GLS mRNA in HCC cells. Finally, we demonstrated that the PTBP1-promoted CDDP resistance of HCC cells was through modulating the GLS-glutamine metabolism axis. Summarily, our findings uncovered a PTBP1-mediated CDDP resistance pathway in HCC, suggesting that PTBP1 is a promisingly therapeutic target to overcome chemoresistance of HCC.
Collapse
Affiliation(s)
- Ruimin Tian
- Liver Diseases Branch, Tianjin Second People’s Hospital, Tianjin, 300192, China
| | - Yanfei Li
- Department of Infectious, People’s Hospital of Huan County,
Qingyang, Gansu, 745700, China
| | - Xiaojie Shen
- Department of Infectious, People’s Hospital of Huan County,
Qingyang, Gansu, 745700, China
| | - Ying Li
- Department of Infectious, Tianjin Second People’s Hospital, No. 7 Sudi South Road, Nankai District, Tianjin, 300192, China
| |
Collapse
|
18
|
Kshetri M, Jogadi W, Alqarni S, Datta P, Cheline M, Sharma A, Betters T, Broyles D, Zheng YR. Exploring the Impact of Head Group Modifications on the Anticancer Activities of Fatty-Acid-like Platinum(IV) Prodrugs: A Structure-Activity Relationship Study. Int J Mol Sci 2023; 24:13301. [PMID: 37686109 PMCID: PMC10487970 DOI: 10.3390/ijms241713301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
We conducted the first comprehensive investigation on the impact of head group modifications on the anticancer activities of fatty-acid-like Pt(IV) prodrugs (FALPs), which are a class of platinum-based metallodrugs that target mitochondria. We created a small library of FALPs (1-9) with diverse head group modifications. The outcomes of our study demonstrate that hydrophilic modifications exclusively enhance the potency of these metallodrugs, whereas hydrophobic modifications significantly decrease their cytotoxicity. To further understand this interesting structure-activity relationship, we chose two representative FALPs (compounds 2 and 7) as model compounds: one (2) with a hydrophilic polyethylene glycol (PEG) head group, and the other (7) with a hydrophobic hydrocarbon modification of the same molecular weight. Using these FALPs, we conducted a targeted investigation on the mechanism of action. Our study revealed that compound 2, with hydrophilic modifications, exhibited remarkable penetration into cancer cells and mitochondria, leading to subsequent mitochondrial and DNA damage, and effectively eradicating cancer cells. In contrast, compound 7, with hydrophobic modifications, displayed a significantly lower uptake and weaker cellular responses. The collective results present a different perspective, indicating that increased hydrophobicity may not necessarily enhance cellular uptake as is conventionally believed. These findings provide valuable new insights into the fundamental principles of developing metallodrugs.
Collapse
Affiliation(s)
- Man Kshetri
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Wjdan Jogadi
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Suha Alqarni
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
- Department of Chemistry, University of Bisha, Bisha 67714, Saudi Arabia
| | - Payel Datta
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - May Cheline
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Tyler Betters
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Deonya Broyles
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| |
Collapse
|
19
|
Li W, Li S, Zhang Z, Xu G, Man X, Yang F, Liang H. Developing a Multitargeted Anticancer Palladium(II) Agent Based on the His-242 Residue in the IIA Subdomain of Human Serum Albumin. J Med Chem 2023. [PMID: 37321208 DOI: 10.1021/acs.jmedchem.3c00248] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To obtain next-generation metal drugs that can overcome the deficiencies of platinum (Pt) drugs and treat cancer more effectively, we proposed to develop a multitargeted palladium (Pd) agent to the tumor microenvironment (TME) based on the specific residue(s) of human serum albumin (HSA). To this end, we optimized a series of Pd(II) 2-benzoylpyridine thiosemicarbazone compounds to obtain a Pd agent (5b) with significant cytotoxicity. The HSA-5b complex structure revealed that 5b bound to the hydrophobic cavity in the HSA IIA subdomain and then His-242 replaced a leaving group (Cl) of 5b, coordinating with the Pd center. The in vivo results showed that the 5b/HSA-5b complex had significant capacity of inhibiting tumor growth, and HSA optimized the therapeutic behavior of 5b. In addition, we confirmed that the 5b/HSA-5b complex inhibited tumor growth through multiple actions on different components of TME: killing cancer cells, inhibiting tumor angiogenesis, and activating T cells.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| |
Collapse
|
20
|
Lee SG. Molecular Target and Action Mechanism of Anti-Cancer Agents. Int J Mol Sci 2023; 24:ijms24098259. [PMID: 37175963 PMCID: PMC10179523 DOI: 10.3390/ijms24098259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Precision oncology, also known as personalized medicine, is an evolving approach to cancer treatment that aims to tailor therapies to individual patients based on their unique molecular profile, including genetic alterations and other biomarkers [...].
Collapse
Affiliation(s)
- Seok-Geun Lee
- Department of Biomedical Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Aleksanyan DV, Konovalov AV, Churusova SG, Rybalkina EY, Peregudov AS, Aksenova SA, Gutsul EI, Klemenkova ZS, Kozlov VA. Modulation of the Cytotoxic Properties of Pd(II) Complexes Based on Functionalized Carboxamides Featuring Labile Phosphoryl Coordination Sites. Pharmaceutics 2023; 15:pharmaceutics15041088. [PMID: 37111574 PMCID: PMC10146186 DOI: 10.3390/pharmaceutics15041088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Platinum-based drugs are commonly recognized as a keystone in modern cancer chemotherapy. However, intrinsic and acquired resistance as well as serious side effects often caused by the traditional Pt(II) anticancer agents prompt a continuous search for more selective and efficient alternatives. Today, significant attention is paid to the compounds of other transition metals, in particular those of palladium. Recently, our research group has suggested functionalized carboxamides as a useful platform for the creation of cytotoxic Pd(II) pincer complexes. In this work, a robust picolinyl- or quinoline-carboxamide core was combined with a phosphoryl ancillary donor group to achieve hemilabile coordination capable of providing the required level of thermodynamic stability and kinetic lability of the ensuing Pd(II) complexes. Several cyclopalladated derivatives featuring either a bi- or tridentate pincer-type coordination mode of the deprotonated phosphoryl-functionalized amides were selectively synthesized and fully characterized using IR and NMR spectroscopy as well as X-ray crystallography. The preliminary evaluation of the anticancer potential of the resulting palladocycles revealed a strong dependence of their cytotoxic properties on the binding mode of the deprotonated amide ligands and demonstrated certain advantages of the pincer-type ligation.
Collapse
|
22
|
Kazimir A, Schwarze B, Lönnecke P, Jelača S, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Metallodrugs against Breast Cancer: Combining the Tamoxifen Vector with Platinum(II) and Palladium(II) Complexes. Pharmaceutics 2023; 15:pharmaceutics15020682. [PMID: 36840003 PMCID: PMC9959148 DOI: 10.3390/pharmaceutics15020682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The luminal A-subtype of breast cancer, where the oestrogen receptor α (ERα) is overexpressed, is the most frequent one. The prodrug tamoxifen (1) is the clinically used agent, inhibiting the ERα activity via the formation of several active metabolites, such as 4-hydroxytamoxifen (2) or 4,4'-dihydroxytamoxifen (3). In this study, we present the tamoxifen derivative 4-[1,1-bis(4-methoxyphenyl)but-1-en-2-yl]-2,2'-bipyridine (4), which was combined with platinum or palladium dichloride, the former a well-known scaffold in anticancer treatment, to give [PtCl2(4-κ2N,N')] (5) or [PdCl2(4-κ2N,N'] (6). To prevent fast exchange of weakly coordinating chlorido ligands in aqueous solution, a bulky, highly stable and hydrophobic nido-carborate(-2) ([C2B9H11]2-) was incorporated. The resulting complexes [3-(4-κ2N,N')-3,1,2-PtC2B9H11] (7) and [3-(4-κ2N,N')-3,1,2-PdC2B9H11] (8) exhibit a dramatic change in electronic and biological properties compared to 5 and 6. Thus, 8 is highly selective for triple-negative MDA-MB-231 cells (IC50 = 3.7 μM, MTT test), while 7 is completely inactive against this cell line. The observed cytotoxicity of compounds 4-6 and 8 against this triple-negative cell line suggests off-target mechanisms rather than only ERα inhibition, for which these compounds were originally designed. Spectroscopic properties and electronic structures of the metal complexes were investigated for possible explanations of the biological activities.
Collapse
Affiliation(s)
- Aleksandr Kazimir
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Benedikt Schwarze
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
23
|
Yang SJ, Pai JA, Shieh MJ, Chen JLY, Chen KC. Cisplatin-loaded gold nanoshells mediate chemo-photothermal therapy against primary and distal lung cancers growth. Biomed Pharmacother 2023; 158:114146. [PMID: 36584428 DOI: 10.1016/j.biopha.2022.114146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the most common cause of cancer mortality worldwide. The advances in surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs have progressed in the past decades, but the prognosis of lung cancer is still poor. In this study, we developed cisplatin (CDDP)-loaded human serum albumin (HSA)-based gold nanoshells (HCP@GNSs) for synergistic chemo-photothermal therapy (chemo-PTT). The HCP@GNSs not only acted as drug nanocarriers for chemotherapy but also serve as a superior mediator for PTT, which could exhibit a temperature increase upon a near infrared (NIR) laser exposure that was sufficient for photothermal ablation. HCP@GNSs were highly biocompatible and hemocompatible nanocarriers, while the synergistic chemo-PTT resulting from HCP@GNSs plus NIR exposure displayed stronger cytotoxicity effect than HCP@GNSs or PTT alone, especially at a low CDDP concentration. In vivo analysis demonstrated that HCP@GNSs-mediated chemo-PTT increased necrosis in tumors to achieve a high tumor clearance rate with no adverse side effects. Moreover, HCP@GNSs-medicated chemo-PTT induced the recruitment of dendritic cells, B-cells, and natural killer T-cells in distal tumors to inhibit the growth of the tumors. Therefore, the CDDP-loaded HCP@GNSs may be a potential nanomedicine candidate for curative lung cancer treatment in the future.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Jui-An Pai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Surgery, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
24
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
25
|
Laginha RC, Martins CB, Brandão ALC, Marques J, Marques MPM, Batista de Carvalho LAE, Santos IP, Batista de Carvalho ALM. Evaluation of the Cytotoxic Effect of Pd 2Spm against Prostate Cancer through Vibrational Microspectroscopies. Int J Mol Sci 2023; 24:ijms24031888. [PMID: 36768221 PMCID: PMC9916163 DOI: 10.3390/ijms24031888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Regarding the development of new antineoplastic agents, with a view to assess the selective antitumoral potential which aims at causing irreversible damage to cancer cells while preserving the integrity of their healthy counterparts, it is essential to evaluate the cytotoxic effects in both healthy and malignant human cell lines. In this study, a complex with two Pd(II) centers linked by the biogenic polyamine spermine (Pd2Spm) was tested on healthy (PNT-2) and cancer (LNCaP and PC-3) prostate human cell lines, using cisplatin as a reference. To understand the mechanisms of action of both cisplatin and Pd2Spm at a molecular level, Fourier Transform Infrared (FTIR) and Raman microspectroscopies were used. Principal component analysis was applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug impact. The main changes were observed between the B-DNA native conformation and either Z-DNA or A-DNA, with a higher effect on lipids having been detected in the presence of cisplatin as compared to Pd2Spm. In turn, the Pd-agent showed a more significant impact on proteins.
Collapse
Affiliation(s)
- Raquel C. Laginha
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Clara B. Martins
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana L. C. Brandão
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Joana Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A. E. Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239854462
| | - Inês P. Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | | |
Collapse
|
26
|
Unprecedented bi- and trinuclear palladium(II)-sodium complexes from a salophen-type Schiff base: Synthesis, characterization, thermal behavior, and in vitro biological activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Palladium(II) and Platinum(II) Deprotonated Diaminocarbene Complexes Based on N-(2-Pyridyl)ureas with Oxadiazole Periphery. INORGANICS 2022. [DOI: 10.3390/inorganics10120247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metal mediated coupling of isocyanides with substituted N-(pyridine-2-yl) ureas was first used to incorporate privileged biological motifs into platinum metal complexes. We synthesized two palladium(II) and two platinum(II) cyclometallated species with oxadiazole cores. The compounds were isolated in good yields (61–73%) and characterized by high-resolution mass spectrometry and 1H, 13C, and 195Pt NMR spectroscopies. The structures of three complexes were additionally elucidated by X-ray diffraction analysis. These complexes indeed showed cytotoxic activity. The species bearing the 1,3,4-oxadiazole moiety exhibit more potency than the ones with the 1,2,4-oxadiazole ring. Particularly, the cytotoxic effect of both 1,3,4-oxadiazole-based complexes towards T98G cells significantly exceeds the common antitumor metal-drug cisplatin.
Collapse
|
28
|
Thiophosphorylated indoles as a promising platform for the creation of cytotoxic Pd(II) pincer complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Tavakoli N, Ghalandari B, Badalkhani-Khamseh F, Ding X, Divsalar A. Molecular Dynamics Simulation Study on the Effect of Oxali-Palladium as a Catalytic Inhibitor of Human Topoisomerase IIα. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2022. [DOI: 10.1007/s40995-022-01384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Roszczenko P, Szewczyk OK, Czarnomysy R, Bielawski K, Bielawska A. Biosynthesized Gold, Silver, Palladium, Platinum, Copper, and Other Transition Metal Nanoparticles. Pharmaceutics 2022; 14:2286. [PMID: 36365105 PMCID: PMC9692384 DOI: 10.3390/pharmaceutics14112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 09/29/2023] Open
Abstract
Nanomedicine is a potential provider of novel therapeutic and diagnostic routes of treatment. Considering the development of multidrug resistance in pathogenic bacteria and the commonness of cancer, novel approaches are being sought for the safe and efficient synthesis of new nanoparticles, which have multifaceted applications in medicine. Unfortunately, the chemical synthesis of nanoparticles raises justified environmental concerns. A significant problem in their widespread use is also the toxicity of compounds that maintain nanoparticle stability, which significantly limits their clinical use. An opportunity for their more extensive application is the utilization of plants, fungi, and bacteria for nanoparticle biosynthesis. Extracts from natural sources can reduce metal ions in nanoparticles and stabilize them with non-toxic extract components.
Collapse
Affiliation(s)
- Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Olga Klaudia Szewczyk
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
31
|
In Vitro and In Vivo Relevant Antineoplastic Activity of Platinum(II) Complexes toward Triple-Negative MDA-MB-231 Breast Cancer Cell Line. Pharmaceutics 2022; 14:pharmaceutics14102013. [PMID: 36297448 PMCID: PMC9609024 DOI: 10.3390/pharmaceutics14102013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Two platinum complexes [Pt(HL3)Cl]·H2O (3) and [Pt(HL4)Cl]·H2O (4) containing α- and β-naphthyl groups, respectively, were investigated in more detail in vitro and in vivo for antineoplastic activity. The cytotoxicity activity induced by these platinum(II) compounds against breast cancer (MDA-MB-231 and MCF-7), lung (A549), prostate (PC3), pancreas (BXPC-3), and normal peripheral blood mononuclear (PBMC) cells were evaluated by MTT assay. The cell viability MTT assay showed that complex (4) was more cytotoxic to all cancer cell lines tested and less cytotoxic against human PBMC. Therefore, complex (4) was selected to further investigate the mechanism of cytotoxic effects involved against MDA-MB-231 cell line (human triple-negative breast cancer). Sub-G1 analysis of the cell cycle showed that this complex induces cell death by apoptosis due to the cell loss of DNA content detected in flow cytometry. The cytotoxic effect induced by complex (4) was associated with the capability of the complex to induce mitochondrial membrane depolarization, as well as increase ROS levels and caspase activation, as a result of the activation of both extrinsic and intrinsic apoptosis pathways. Ultrastructural alterations were observed using scanning and transmission electron microscopy (SEM and TEM), such as membrane blebbing, filopodia reduction, empty mitochondrial matrix, and DNA fragmentation. Furthermore, complex (4) was tested in an MDA-MB-231 tumor nodule xenograft murine model and demonstrated a remarkable reduction in tumor size in BALB/c nude mice, when compared to the control animals.
Collapse
|
32
|
Murillo MI, Gaiddon C, Le Lagadec R. Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Front Chem 2022; 10:967337. [PMID: 36034648 PMCID: PMC9405673 DOI: 10.3389/fchem.2022.967337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cancers is often linked to the alteration of essential redox processes, and therefore, oxidoreductases involved in such mechanisms can be considered as attractive molecular targets for the development of new therapeutic strategies. On the other hand, for more than two decades, transition metals derivatives have been leading the research on drugs as alternatives to platinum-based treatments. The success of such compounds is particularly due to their attractive redox kinetics properties, favorable oxidation states, as well as routes of action different to interactions with DNA, in which redox interactions are crucial. For instance, the activity of oxidoreductases such as PHD2 (prolyl hydroxylase domain-containing protein) which can regulate angiogenesis in tumors, LDH (lactate dehydrogenase) related to glycolysis, and enzymes, such as catalases, SOD (superoxide dismutase), TRX (thioredoxin) or GSH (glutathione) involved in controlling oxidative stress, can be altered by metal effectors. In this review, we wish to discuss recent results on how transition metal complexes have been rationally designed to impact on redox processes, in search for effective and more specific cancer treatments.
Collapse
Affiliation(s)
- María Isabel Murillo
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Christian Gaiddon
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
- *Correspondence: Ronan Le Lagadec,
| |
Collapse
|
33
|
Bíró L, Ozsváth A, Kapitány R, Buglyó P. Pd(II) Binding Strength of a Novel Ambidentate Dipeptide-Hydroxypyridinonate Ligand: A Solution Equilibrium Study. Molecules 2022; 27:molecules27144667. [PMID: 35889540 PMCID: PMC9324670 DOI: 10.3390/molecules27144667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
A novel ambidentate dipeptide conjugate (H(L1)) containing N-donor atoms of the peptide part and an (O,O) chelate at the hydroxypyridinone (HP) ring is synthesized and characterized. It is hoped that this chelating ligand can be useful to obtain multitargeted Co(III)/Pt(II) dinuclear complexes with anticancer potential. The Pd(II) (as a Pt(II) model but with faster ligand exchange reactions) binding strength of the ligand was studied in an aqueous solution with the combined use of pH-potentiometry and NMR. In an equimolar solution, (L1)− was found to bind Pd(II) via the terminal amino and increasing number of peptide nitrogens of the peptide backbone over a wide pH range. At a 2:1 Pd(II) to ligand ratio, the presence of [Pd2H–x(L1)] (x = 1–4) species, with high stability and with the coordination of the (O,O) chelating set of the ligand, was detected. The reaction of H(L1) with [Co(tren)]3+ (tren = tris(2-aminoethyl)amine) indicated the exclusive binding of (L1)− via its (O,O) donor atoms to the metal unit, while treatment of the resulting Co-complex with Pd(II) afforded the formation of a Co/Pd heterobimetallic complex in solution with an (NH2, Namide) coordination of Pd(II). Shortening the peptide backbone in H(L1) by one peptide unit compared to the structurally similar ambidentate chelator consisting of three peptide bonds resulted in the slightly more favorable formation of the N-coordinated Pd(II) species, allowing the tailoring of the coordination properties.
Collapse
|
34
|
Tripathy D, Ganta S, Rath SL, Chand DK. Hierarchical self-assembly of self-assembled Pd(II) complexes: Synthesis, structural characterization, crystal packing evaluation and docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
36
|
Franco Machado J, Morais TS. Are smart delivery systems the solution to overcome the lack of selectivity of current metallodrugs in cancer therapy? Dalton Trans 2022; 51:2593-2609. [PMID: 35106525 DOI: 10.1039/d1dt04079k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chemotherapeutic metallodrugs such as cisplatin and its derivatives are among the most widely applied anticancer treatments worldwide. Despite their clinical success, patients suffer from severe adverse effects while subjected to treatment due to platinum's low selectivity for tumour over healthy tissues. Additionally, intrinsic or acquired resistance to metallodrugs, as well as their inability to reach cancer metastases, often results in therapeutic failure. The evident need for highly efficient and specific treatments has driven the scientific community to research novel ways to surpass the stated limitations. Within this scenario, a rising number of smart drug delivery systems have been lately reported to target primary cancers or metastases, where the metallodrugs are released in a controlled and selective way triggered by specific tumour-related stimuli, thus suggesting a viable and attractive therapeutic approach. Herein, we discuss the main efforts undertaken in the past few years towards the smart delivery of metal-based drugs and drug candidates to tumour sites, particularly focusing on the pH- and/or redox-responsive targeted delivery of platinum and ruthenium anticancer complexes.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
37
|
Nahaei A, Mandegani Z, Chamyani S, Fereidoonnezhad M, Shahsavari HR, Kuznetsov NY, Nabavizadeh SM. Half-Sandwich Cyclometalated Rh III Complexes Bearing Thiolate Ligands: Biomolecular Interactions and In Vitro and In Vivo Evaluations. Inorg Chem 2022; 61:2039-2056. [PMID: 35023727 DOI: 10.1021/acs.inorgchem.1c03218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A class of cyclometalated RhIII complexes [Cp*Rh(ppy)(SR)] bearing thiolate ligands, Cp* = pentamethylcyclopentadienyl, ppy = 2-phenylpyridinate, and R = pyridyl (Spy, 2), pyrimidyl (SpyN, 3), benzimidazolyl (Sbi, 4), and benzothiazolyl (Sbt, 5), were produced and identified by means of spectroscopic methods. The in vitro cytotoxicity of the RhIII compounds in three different human mortal cancerous cell lines (ovarian, SKOV3; breast, MCF-7; lung, A549) and a normal lung (MRC-5) cell line were evaluated, indicating the selectivity of these cyclometalated RhIII complexes to cancer cells. Complex 5, selected for in vivo experiment, has shown an effective inhibition of tumor growth in SKOV3 xenograft mouse model relative to control (p-values < 0.05 and < 0.01). Importantly, the outcomes of H&E (hematoxylin and eosin) staining and hematological analysis revealed negligible toxicity of 5 compared to cisplatin on a functioning of the main organs of mouse. Molecular docking, UV-vis, and emission spectroscopies (fluorescence, 3D fluorescence, synchronous) techniques were carried out on 1-5 to peruse the mechanism of the anticancer activities of these complexes. The obtained data help to manifest the binding affinity between the rhodium compounds and calf thymus DNA (CT-DNA) through the interaction by DNA minor groove and moderate binding affinity with bovine serum albumin (BSA), particularly with the cavity in the subdomain IIA. It can be concluded that the Rh-thiolate complexes are highly promising leads for the development of novel effective DNA-targeted anticancer drugs.
Collapse
Affiliation(s)
- Asma Nahaei
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nikolai Yu Kuznetsov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
38
|
Gambino D, Otero L. Facing Diseases Caused by Trypanosomatid Parasites: Rational Design of Pd and Pt Complexes With Bioactive Ligands. Front Chem 2022; 9:816266. [PMID: 35071192 PMCID: PMC8777014 DOI: 10.3389/fchem.2021.816266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Human African Trypanosomiasis (HAT), Chagas disease or American Trypanosomiasis (CD), and leishmaniases are protozoan infections produced by trypanosomatid parasites belonging to the kinetoplastid order and they constitute an urgent global health problem. In fact, there is an urgent need of more efficient and less toxic chemotherapy for these diseases. Medicinal inorganic chemistry currently offers an attractive option for the rational design of new drugs and, in particular, antiparasitic ones. In this sense, one of the main strategies for the design of metal-based antiparasitic compounds has been the coordination of an organic ligand with known or potential biological activity, to a metal centre or an organometallic core. Classical metal coordination complexes or organometallic compounds could be designed as multifunctional agents joining, in a single molecule, different chemical species that could affect different parasitic targets. This review is focused on the rational design of palladium(II) and platinum(II) compounds with bioactive ligands as prospective drugs against trypanosomatid parasites that has been conducted by our group during the last 20 years.
Collapse
Affiliation(s)
- Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Lucía Otero
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
39
|
Goudarzi A, Ghassemzadeh M, Saeidifar M, Aghapoor K, Mohsenzadeh F, Neumüller B. In vitro cytotoxicity and antibacterial activity of [Pd(AMTTO)(PPh 3) 2]: a novel promising palladium( ii) complex. NEW J CHEM 2022. [DOI: 10.1039/d1nj05545c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and characterization of a novel palladium complex based on a bioactive 3-mercapto-1,2,4-triazine derivative have been investigated. The Pd(ii) complex showed excellent anticancer and antibacterial activity.
Collapse
Affiliation(s)
- Atousa Goudarzi
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Mitra Ghassemzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Kioumars Aghapoor
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Farshid Mohsenzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
40
|
Kutlu E, Emen FM, Kismali G, Kınaytürk NK, Karacolak AI, Kilic D, Asim Ali M, Kutlu HM, Demirdogen RE. Synthesis and investigation of in vitro cytotoxic activities and thermal stability of novel pyridine derivative platinum (II) complexes vis a vis DFT studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Endothelial peroxynitrite causes disturbance of neuronal oscillations by targeting caspase-1 in the arcuate nucleus. Redox Biol 2021; 47:102147. [PMID: 34601428 PMCID: PMC8495174 DOI: 10.1016/j.redox.2021.102147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Severe anorexia limits the clinical application of cisplatin, and even leads to the discontinuation of treatment. However, the mechanisms underlying cisplatin-induced anorexia are unknown. Herein, we demonstrated that cisplatin could affect neuronal gamma oscillations and induce abnormal neuronal theta-gamma phase-amplitude coupling in the arcuate nucleus (Arc) of the hypothalamus, and these findings were associated with significantly decreased food intake and weight loss in mice. Chemogenetic activation of AgRP neurons in the Arc reversed the cisplatin-induced food intake reduction in mice. We further demonstrated that endothelial peroxynitrite (ONOO−) formation in the Arc induced nitrosative stress following cisplatin treatment via a previously uncharacterized pathway involving neuronal caspase-1 activation. Strikingly, treatment with the ONOO− scavenger uric acid (UA) reversed the reduced action potential (AP) frequency of AgRP neurons and increased the AP frequency of POMC neurons induced by SIN1, a donor of ONOO−, in the Arc, as determined by whole-cell patch-clamp electrophysiological recording. Consistent with these findings, UA treatment effectively alleviated cisplatin-induced dysfunction of neuronal oscillations and neuronal theta-gamma phase-amplitude coupling in the Arc of mice. Taken together, these results suggest, for the first time, that targeting the overproduction of endothelial ONOO− can regulate cisplatin-induced neurotoxicity through neuronal caspase-1, and thereby serve as a potential therapeutic approach to alleviate chemotherapy-induced anorexia and weight loss. Endothelial ONOO– induced the abnormal neuronal oscillations following cisplatin treatment through caspase-1 in the Arc. ONOO– scavenger UA could attenuate cisplatin-induced neurotoxicity and caspase-1 activation in the Arc. Targeting endothelial ONOO– provided a promising approach to alleviate chemotherapy-induced anorexia and weight loss.
Collapse
|