1
|
Goodwin CM, Aimutis WR, Shirwaiker RA. A scoping review of cultivated meat techno-economic analyses to inform future research directions for scaled-up manufacturing. NATURE FOOD 2024; 5:901-910. [PMID: 39424999 DOI: 10.1038/s43016-024-01061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Techno-economic analyses offer insights into how industrial cultivated meat (CM) production could achieve price parity with conventional meat. These analyses use scaling practices, data and facility designs for related bioprocessing fields, including large (≥20,000 l) stirred tank bioreactors and suspension-tolerant, continuously available cell lines. This approach is inconsistent with most primary CM literature, which parallels bench-scale tissue engineering. TEAs published to date demonstrate that, under the current technological paradigm, CM is unlikely to be competitive with conventional meat. Scale-up feasibility may hinge on cost-saving areas such as use of plant-based media components, food-grade aseptic conditions and extensive scaling of related supply chains. Research must address knowledge gaps including serum-free differentiation, new bioreactor designs and facility design before CM can become a viable alternative to animal-based meat production.
Collapse
Affiliation(s)
- Corbin M Goodwin
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA
| | - William R Aimutis
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC, USA
| | - Rohan A Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Luo H, Ruan H, Ye C, Jiang W, Wang X, Chen S, Chen Z, Li D. Plant-derived leaf vein scaffolds for the sustainable production of dog cell-cultured meat. Food Chem X 2024; 23:101603. [PMID: 39100247 PMCID: PMC11295996 DOI: 10.1016/j.fochx.2024.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Animal cell culture technology in the production of slaughter-free meat offers ethical advantages with regards to animal welfare, rendering it a more socially acceptable approach for dog meat production. In this study, edible plant-derived scaffold was used as a platform for cell expansion to construct cell-cultured dog meat slices. Primary dog skeletal muscle satellite cells (MSCs) and adipose stem cells (ASCs) were isolated and cultured as seed cells, and 3D spheroid culture in vitro promoted MSCs and ASCs myogenic and adipogenic differentiation, respectively. Natural leaf veins (NLV) were produced as edible mesh scaffolds to create 3D engineered dog muscle and fat tissues. After MSCs and ASCs adhered, proliferated and differentiated on the NLV scaffolds, and muscle and fat slices were produced with cultured dog muscle fibers and adipocytes, respectively. These findings demonstrate the potential of plant-derived NLV scaffolds in the production of cultured dog meat.
Collapse
Affiliation(s)
- Huina Luo
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Huimin Ruan
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Cailing Ye
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Wenkang Jiang
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Xin Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shengfeng Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhisheng Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Dongsheng Li
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| |
Collapse
|
3
|
Nielsen SDH, Sahebekhtiari N, Huang Z, Young JF, Rasmussen MK. Comparison of secreted miRNAs and proteins during proliferation and differentiation of bovine satellite cells in culture implies potential roles in regulating myogenesis. Gene 2024; 894:147979. [PMID: 37952749 DOI: 10.1016/j.gene.2023.147979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Cultivated meat is an emerging new technology to produce sustainable meat for the future. The common approach for cultivated meat, is the isolation of satellite cells from donor animals, followed by in vitro proliferation and differentiation into primitive muscle fibers. The transformation of satellite cells into myofibers is tightly orchestrated by intra-cellular signaling, while the inter-cellular signaling is less well understood. Thus, the current study was conducted to map the secretion of potential signaling molecules (MicroRNAs and proteins) during proliferation and differentiation. Primary cultures of satellite cells were grown to 50% and 80% confluence, representing the proliferative phase or serum-starved for 1 and 3 days to induce differentiation. Post incubation in FBS-free media, the media were collected and analyzed for miRNA and protein content using gene-arrays and LC-MS/MS, respectively. When comparing the miRNA secretome at 50% and 80% confluence, we observed four differentially expressed miRNA, while only five were differentially expressed when comparing Day 1 to Day 3. A subsequent in silico analysis suggested that pathways of importance for myogenesis, e.g., MAPK and AMPK signaling, could be regulated by the secreted miRNAs. In addition, >300 proteins were secreted, including insulin-like growth factor 1 binding proteins 2, 3, 4, 5 and 6. In conclusion, this study demonstrated differential secretion of several miRNAs and proteins during both proliferation and differentiation of bovine satellite cells in vitro.
Collapse
Affiliation(s)
| | - Navid Sahebekhtiari
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Ziyu Huang
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Jette Feveile Young
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | | |
Collapse
|
4
|
Skrivergaard S, Krøyer Rasmussen M, Sahebekhtiari N, Feveile Young J, Therkildsen M. Satellite cells sourced from bull calves and dairy cows differs in proliferative and myogenic capacity - Implications for cultivated meat. Food Res Int 2023; 173:113217. [PMID: 37803537 DOI: 10.1016/j.foodres.2023.113217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/08/2023]
Abstract
Cultivated meat produced with primary muscle satellite cells (SCs) will need a continuous supply of isolated cell material from relevant animal donors. Factors such as age, sex, and breed, along with the sustainability and availability of donor animals, could determine the most appropriate donor type for an efficient production. In this study, we focus on the proliferation and differentiation of bovine SCs isolated from bull calf and dairy cow muscle samples. The proliferative performance of bull calf SCs was significantly better than SCs from dairy cows, however a dynamic differentiation assay revealed that the degree of fusion and formation of myotubes were similar between donor types. Furthermore, the proliferation of SCs from both donor types was enhanced using an in-house developed serum-free media compared to 10% FBS, which also delayed myogenic differentiation and increased final cell population density. Using gene chip transcriptomics, we identified several differentially expressed genes between the two donor types, which could help explain the observed cellular differences. This data also revealed a high biological variance between the three replicate animals within donor type, which seemed to be decreased when using our in-house serum-free media. With the use of the powerful imaging modalities of Cytation 5, we developed a novel high contrast brightfield-enabled label-free myotube quantification method along with a more efficient end-point fusion analysis using Phalloidin-staining. The results give new insights into the bovine SC biology and potential use of bull calves and dairy cows as relevant donor animals for cultivated beef cell sourcing. The newly developed differentiation assays will further enhance future research within the field of cultivated meat and SC biology.
Collapse
|
5
|
Jara TC, Park K, Vahmani P, Van Eenennaam AL, Smith LR, Denicol AC. Stem cell-based strategies and challenges for production of cultivated meat. NATURE FOOD 2023; 4:841-853. [PMID: 37845547 DOI: 10.1038/s43016-023-00857-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cultivated meat scale-up and industrial production will require multiple stable cell lines from different species to recreate the organoleptic and nutritional properties of meat from livestock. In this Review, we explore the potential of stem cells to create the major cellular components of cultivated meat. By using developments in the fields of tissue engineering and biomedicine, we explore the advantages and disadvantages of strategies involving primary adult and pluripotent stem cells for generating cell sources that can be grown at scale. These myogenic, adipogenic or extracellular matrix-producing adult stem cells as well as embryonic or inducible pluripotent stem cells are discussed for their proliferative and differentiation capacity, necessary for cultivated meat. We examine the challenges for industrial scale-up, including differentiation and culture protocols, as well as genetic modification options for stem cell immortalization and controlled differentiation. Finally, we discuss stem cell-related safety and regulatory challenges for bringing cultivated meat to the marketplace.
Collapse
Affiliation(s)
- T C Jara
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - K Park
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - P Vahmani
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - A L Van Eenennaam
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - L R Smith
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - A C Denicol
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
6
|
Skrivergaard S, Young JF, Sahebekhtiari N, Semper C, Venkatesan M, Savchenko A, Stogios PJ, Therkildsen M, Rasmussen MK. A simple and robust serum-free media for the proliferation of muscle cells. Food Res Int 2023; 172:113194. [PMID: 37689947 DOI: 10.1016/j.foodres.2023.113194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Cultivated meat production requires an efficient, robust and highly optimized serum-free cell culture media for the needed upscaling of muscle cell expansion. Existing formulations of serum-free media are complex, expensive and have not been optimized for muscle cells. Thus, we undertook this work to develop a simple and robust serum-free media for the proliferation of bovine satellite cells (SCs) through Design of Experiment (DOE) and Response Surface Methodology (RSM) using precise and high-throughput image-based cytometry. Proliferative attributes were investigated with transcriptomics and long-term performance was validated using multiple live assays. Here we formulated a media based on three highly optimized components; FGF2 (2 ng/mL), fetuin (600 µg/mL) and BSA (75 µg/mL) which together with an insulin-transferrin-selenium (1x) supplement, sustained the proliferation of bovine SCs, porcine SCs and murine C2C12 muscle cells. Remarkably, cells cultured in our media named Tri-basal 2.0+ performed better than cell cultured in 10% FBS, with respect to proliferation. Hence, the optimized Tri-basal 2.0+ enhanced serum-free cell attachment and long-term proliferation, providing an alternative solution to the use of FBS in the production of cultivated meat.
Collapse
Affiliation(s)
| | | | | | - Cameron Semper
- Department of Microbiology, Immunology, and Infectious Disease. University of Calgary, Calgary, Canada
| | - Meenakshi Venkatesan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology, and Infectious Disease. University of Calgary, Calgary, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
7
|
Chen M, Liu Q, Song M, Liu X, Huang K, Zhong D, Chen Y, Jiang M, Sun J, Ouyang Y, Sooranna SR, Shi D, Li H. CircCLTH promotes skeletal muscle development and regeneration. Epigenetics 2022; 17:2296-2317. [PMID: 36043316 PMCID: PMC9665157 DOI: 10.1080/15592294.2022.2117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
Buffalo holds an excellent potential for beef production, and circRNA plays an important role in regulating myogenesis. However, the regulatory mechanism of circRNAs during buffalo skeletal muscle development has not been fully explored. In this study, circRNA expression profiles during the proliferation and differentiation stages of buffalo myoblasts were analysed by RNA-seq. Here, a total of 3,142 circRNAs candidates were identified, and 110 of them were found to be differentially expressed in the proliferation and differentiation stages of buffalo myoblast libraries. We focused on a 347 nt circRNA subsequently named circCLTH. It consists of three exons and is expressed specifically in muscle tissues. It is a highly conserved non-coding RNA with about 95% homology to both the human and the mouse circRNAs. The results of cell experiments and RNA pull-down assays indicated that circCLTH may capture PLEC protein, promote the proliferation and differentiation of myoblasts as well as inhibit apoptosis. Overexpression of circCLTH in vivo suggests that circCLTH is involved in the stimulation of skeletal muscle regeneration. In conclusion, we identified a novel noncoding regulator, circCLTH, that promotes proliferation and differentiation of myoblasts and skeletal muscles.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Suren R Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Venkatesan M, Semper C, Skrivergaard S, Di Leo R, Mesa N, Rasmussen MK, Young JF, Therkildsen M, Stogios PJ, Savchenko A. Recombinant production of growth factors for application in cell culture. iScience 2022; 25:105054. [PMID: 36157583 PMCID: PMC9489951 DOI: 10.1016/j.isci.2022.105054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Culturing eukaryotic cells has widespread applications in research and industry, including the emerging field of cell-cultured meat production colloquially referred to as “cellular agriculture”. These applications are often restricted by the high cost of growth medium necessary for cell growth. Mitogenic protein growth factors (GFs) are essential components of growth medium and account for upwards of 90% of the total costs. Here, we present a set of expression constructs and a simplified protocol for recombinant production of functionally active GFs, including FGF2, IGF1, PDGF-BB, and TGF-β1 in Escherichia coli. Using this E. coli expression system, we produced soluble GF orthologs from species including bovine, chicken, and salmon. Bioactivity analysis revealed orthologs with improved performance compared to commercially available alternatives. We estimated that the production cost of GFs using our methodology will significantly reduce the cost of cell culture medium, facilitating low-cost protocols tailored for cultured meat production and tissue engineering. Developed methodology for low-cost production of soluble, bioactive GFs Purified GFs were active on NIH-3T3 and bovine satellite cells Some GF orthologs outperformed commercially sourced GFs Production of GFs using these methods can foster significant cost savings
Collapse
Affiliation(s)
- Meenakshi Venkatesan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Nathalie Mesa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | | | | | | | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
9
|
Kumar A, Sood A, Han SS. Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit Rev Food Sci Nutr 2022; 63:585-612. [PMID: 36239416 DOI: 10.1080/10408398.2022.2132206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro cultured meat is an emerging area of research focus with an innovative approach through tissue engineering (i.e., cellular engineering) to meet the global food demand. The manufacturing of lab-cultivated meat is an innovative business that alleviates life-threatening environmental issues concerning public health and animal well-being on the global platform. There has been a noteworthy advancement in cultivating artificial meat, but still, there are numerous challenges that impede the swift headway of lab-grown meat production at a commercially large scale. In this review, we focus on the manufacturing of edible scaffolds for cultured meat production. In brief, first an introduction to cultivating artificial meat and its current scenario in the market is provided. Further, a discussion on the understanding of composition, cellular, and molecular communications in muscle tissue is presented, which are vital to scaling up the production of lab-grown meat. In continuation, the major components (e.g., cells, biomaterial scaffolds, and their manufacturing technologies, media, and potential bioreactors) for cultured meat production are conferred followed by a comprehensive discussion on the most recent advances in lab-cultured meat. Finally, existing challenges and opportunities including future research perspectives for scaling-up cultured meat production are discussed with conclusive interpretations.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
10
|
Lee DY, Lee SY, Yun SH, Jeong JW, Kim JH, Kim HW, Choi JS, Kim GD, Joo ST, Choi I, Hur SJ. Review of the Current Research on Fetal Bovine Serum and the
Development of Cultured Meat. Food Sci Anim Resour 2022; 42:775-799. [PMID: 36133630 PMCID: PMC9478980 DOI: 10.5851/kosfa.2022.e46] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this review is to summarize studies that investigate blood and the
main components of fetal bovine serum (FBS) in vertebrates, including major
livestock, and review the current research on commercializing cultured meat.
Detailed research on FBS is still lacking; however, some studies have shown that
FBS consists of proteins, carbohydrates, growth factors, cytokines, fats,
vitamins, minerals, hormones, non-protein nitrogen, and inorganic compounds.
However, there are few studies on how the composition of FBS differs from blood
or serum composition in adult animals, which is probably one of the main reasons
for not successfully replacing FBS. Moreover, recent studies on the development
of FBS replacers and serum-free media have shown that it is difficult to
conclude whether FBS has been completely replaced or serum-free media have been
developed successfully. Our review of the industrialization of cultured meat
reveals that many basic studies on the development of cultured meat have been
conducted, but it is assumed that the study to reduce or replace ingredients
derived from fetuses such as FBS has not yet been actively developed. Therefore,
developing inexpensive and edible media is necessary for the successful
industrialization of cultured meat.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyun Woo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Gap-Don Kim
- Graduate School of International
Agricultural Technology, Institutes of Green Bio Science and Technology,
Seoul National University, Pyeongchang 25354, Korea
| | - Seon Tea Joo
- Division of Applied Life Science (BK21
Four), Institute of Agriculture & Life Science, Gyeongsang National
University, Jinju 52828, Korea
| | - Inho Choi
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
- Corresponding author: Sun Jin
Hur, Department of Animal Science and Technology, Chung-Ang University, Anseong
17546, Korea, Tel: +82-31-670-4673, Fax: +82-31-670-3108, E-mail:
| |
Collapse
|