1
|
Razavi Z, Soltani M, Souri M, van Wijnen AJ. CRISPR innovations in tissue engineering and gene editing. Life Sci 2024; 358:123120. [PMID: 39426588 DOI: 10.1016/j.lfs.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, utilizing the Cas9 nuclease and programmable single guide RNA (sgRNA). However, the Cas9 nuclease activity can be disabled by mutation, resulting in catalytically deactivated Cas9 (dCas9). By combining the customizable sgRNA with dCas9, researchers can inhibit specific gene expression (CRISPR interference, CRISPRi) or activate the expression of a target gene (CRISPR activation, CRISPRa). In this review, we present the principles and recent advancements of these CRISPR technologies, as well as their delivery vectors. We also explore their applications in stem cell engineering and regenerative medicine, with a focus on in vitro stem cell fate manipulation and in vivo treatments. These include the prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, and the treatment of blood, skin, and liver diseases. Furthermore, we discuss the challenges of translating CRISPR technologies into regenerative medicine and provide future perspectives. Overall, this review highlights the potential of CRISPR in advancing regenerative medicine and offers insights into its application in various areas of research and therapy.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
A V, Kumar A, Mahala S, Chandra Janga S, Chauhan A, Mehrotra A, Kumar De A, Ranjan Sahu A, Firdous Ahmad S, Vempadapu V, Dutt T. Revelation of genetic diversity and genomic footprints of adaptation in Indian pig breeds. Gene 2024; 893:147950. [PMID: 37918549 DOI: 10.1016/j.gene.2023.147950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In the present study, the genetic diversity measures among four Indian domestic breeds of pig namely Agonda Goan, Ghurrah, Ghungroo, and Nicobari, of different agro-climatic regions of country were explored and compared with European commercial breeds, European wild boar and Chinese domestic breeds. The double digest restriction site-associated DNA sequencing (ddRADseq) data of Indian pigs (102) and Landrace (10 animals) were generated and whole genome sequencing data of exotic pigs (60 animals) from public data repository were used in the study. The principal component analysis (PCA), admixture analysis and phylogenetic analysis revealed that Indian breeds were closer in ancestry to Chinese breeds than European breeds. European breeds exhibited highest genetic diversity measures among all the considered breeds. Among Indian breeds, Agonda Goan and Ghurrah were found to be more genetically diverse than Nicobari and Ghungroo. The selection signature regions in Indian pigs were explored using iHS and XP-EHH, and during iHS analysis, it was observed that genes related to growth, reproduction, health, meat quality, sensory perception and behavior were found to be under selection pressure in Indian pig breeds. Strong selection signatures were recorded in 24.25-25.25 Mb region of SSC18, 123.25-124 Mb region of SSC15 and 118.75-119.5 Mb region of SSC2 in most of the Indian breeds upon pairwise comparison with European commercial breeds using XP-EHH. These regions were harboring some important genes such as EPHA4 for thermotolerance, TAS2R16, FEZF1, CADPS2 and PTPRZ1 for adaptability to scavenging system of rearing, TRIM36 and PGGT1B for disease resistance and CCDC112, PIAS1, FEM1B and ITGA11 for reproduction.
Collapse
Affiliation(s)
- Vani A
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India.
| | - Sudarshan Mahala
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing, and Engineering, Indiana University, IUPUI, Indianapolis, IN, USA
| | - Anuj Chauhan
- Livestock Production and Management, Indian Veterinary Research Institute, Bareilly, UP, India
| | | | - Arun Kumar De
- Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Amiya Ranjan Sahu
- Central Coastal Agricultural Research Institute, Old Goa, Goa, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Varshini Vempadapu
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Triveni Dutt
- Livestock Production and Management, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
3
|
Hashmi S, Shah PW, Aherrahrou Z, Aikawa E, Aherrahrou R. Beyond the Basics: Unraveling the Complexity of Coronary Artery Calcification. Cells 2023; 12:2822. [PMID: 38132141 PMCID: PMC10742130 DOI: 10.3390/cells12242822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Coronary artery calcification (CAC) is mainly associated with coronary atherosclerosis, which is an indicator of coronary artery disease (CAD). CAC refers to the accumulation of calcium phosphate deposits, classified as micro- or macrocalcifications, that lead to the hardening and narrowing of the coronary arteries. CAC is a strong predictor of future cardiovascular events, such as myocardial infarction and sudden death. Our narrative review focuses on the pathophysiology of CAC, exploring its link to plaque vulnerability, genetic factors, and how race and sex can affect the condition. We also examined the connection between the gut microbiome and CAC, and the impact of genetic variants on the cellular processes involved in vascular calcification and atherogenesis. We aimed to thoroughly analyze the existing literature to improve our understanding of CAC and its potential clinical and therapeutic implications.
Collapse
Affiliation(s)
- Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan;
| | - Pashmina Wiqar Shah
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Rédouane Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
4
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
5
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
6
|
Sheikh Beig Goharrizi MA, Ghodsi S, Memarjafari MR. Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101603. [PMID: 36682390 DOI: 10.1016/j.cpcardiol.2023.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Today, new methods have been developed to treat or modify the natural course of cardiovascular diseases (CVDs), including atherosclerosis, by the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) system. Genome-editing tools are CRISPR-related palindromic short iteration systems such as CRISPR-Cas9, a valuable technology for achieving somatic and germinal genomic manipulation in model cells and organisms for various applications, including the creation of deletion alleles. Mutations in genomic deoxyribonucleic acid and new genes' placement have emerged. Based on World Health Organization fact sheets, 17.9 million people die from CVDs each year, an estimated 32% of all deaths worldwide. 85% of all CVD deaths are due to acute coronary events and strokes. This review discusses the applications of CRISPR-Cas9 technology throughout atherosclerotic disease research and the prospects for future in vivo genome editing therapies. We also describe several limitations that must be considered to achieve the full scientific and therapeutic potential of cardiovascular genome editing in the treatment of atherosclerosis.
Collapse
Affiliation(s)
| | - Saeed Ghodsi
- Department of Cardiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Mohamed F, Mansfield BS, Raal FJ. ANGPTL3 as a Drug Target in Hyperlipidemia and Atherosclerosis. Curr Atheroscler Rep 2022; 24:959-967. [PMID: 36367663 PMCID: PMC9650658 DOI: 10.1007/s11883-022-01071-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE OF REVIEW Elevated low-density lipoprotein cholesterol (LDL-C) and triglyceride-rich lipoproteins (TRLs) or remnants are important risk factors for the development of atherosclerotic cardiovascular disease (ASCVD). The ongoing challenge of not being able to achieve recommended LDL-C targets despite maximally tolerated lipid-lowering therapy (LLT) has led to the development of novel therapeutic agents including angiopoietin-like 3 (ANGPTL3) inhibitors. RECENT FINDINGS ANGPTL3 is a glycoprotein produced by the liver that inhibits lipoprotein lipase and endothelial lipase. Data from genetic and clinical studies have shown that a lower ANGPTL3 level is associated with lower plasma LDL-C, triglyceride (TG), and other lipoproteins. Pharmacological inactivation of ANGPTL3 with the monoclonal antibody, evinacumab, results in a 50% reduction in LDL-C, even in patients with homozygous familial hypercholesterolemia (HoFH). The safe and effective targeted delivery of nucleic acid-based therapies will shape the future of the lipid arena. ANGPTL3 is a novel target in lipoprotein metabolism, targeting not only LDL-C via an LDL-receptor (LDLR) independent mechanism but also TRLs and carries a significant promise for further ASCVD risk reduction.
Collapse
Affiliation(s)
- Farzahna Mohamed
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| | - Brett S. Mansfield
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| | - Frederick J. Raal
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|