1
|
Yin IX, Xu VW, Xu GY, Yu OY, Niu JY, Chu CH. Synthesis and Application of Silver Nanoparticles for Caries Management: A Review. Pharmaceuticals (Basel) 2024; 17:1264. [PMID: 39458905 PMCID: PMC11510209 DOI: 10.3390/ph17101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Silver nanoparticles have unique physical, chemical, and biological properties that make them attractive for medical applications. They have gained attention in dentistry for their potential use in caries management. This study reviews the different synthesis methods of silver nanoparticles and the application of them for caries management. Silver nanoparticles are tiny silver and are typically less than 100 nanometres in size. They have a high surface area-to-volume ratio, making them highly reactive and allowing them to interact with bacteria and other materials at the molecular level. Silver nanoparticles have low toxicity and biocompatibility. Researchers have employed various methods to synthesise silver nanoparticles, including chemical, physical, and biological methods. By controlling the process, silver nanoparticles have defined sizes, shapes, and surface properties for wide use. Silver nanoparticles exhibit strong antibacterial properties, capable of inhibiting a broad range of bacteria, including antibiotic-resistant strains. They inhibit the growth of cariogenic bacteria, such as Streptococcus mutans. They can disrupt bacterial cell membranes, interfere with enzyme activity, and inhibit bacterial replication. Silver nanoparticles can inhibit biofilm formation, reducing the risk of caries development. Additionally, nano silver fluoride prevents dental caries by promoting tooth remineralisation. They can interact with the tooth structure and enhance the deposition of hydroxyapatite, aiding in repairing early-stage carious lesions. Silver nanoparticles can also be incorporated into dental restorative materials such as composite resins and glass ionomer cements. The incorporation can enhance the material's antibacterial properties, reducing the risk of secondary caries and improving the longevity of the restoration.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (I.X.Y.); (V.W.X.); (G.Y.X.); (O.Y.Y.); (J.Y.N.)
| |
Collapse
|
2
|
El-Maraghy CM, Medhat PM, Hathout RM, Ayad MF, Fares NV. Implementation of green-assessed nanotechnology and quality by design approach for development of optical sensor for determination of tobramycin in ophthalmic formulations and spiked human plasma. BMC Chem 2024; 18:131. [PMID: 39010206 PMCID: PMC11247747 DOI: 10.1186/s13065-024-01234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
A fast eco-friendly colorimetric method was developed for the determination of Tobramycin in drug substance, ophthalmic formulations, and spiked human plasma using silver nanoparticles optical sensor. Even though tobramycin is non-UV-visible absorbing, the developed method is based on measuring the absorbance quenching of silver nanoparticles resulting from the interaction with tobramycin. Different factors affecting the absorbance intensity were studied as; silver nanoparticle concentration, pH, buffer type, and reaction time using quality by design approach. Validation of the proposed method was performed according to ICH guidelines and was found to be accurate, precise, and sensitive. The linearity range of tobramycin was 0.35-4.0 μg/mL. The optical sensor was successfully applied for the determination of Tobramycin in ophthalmic formulations and spiked human plasma without pre-treatment. Additionally, the binding between Tobramycin and PVP- capped silver nanoparticles was studied using molecular docking software. The method was assessed and compared to colorimetric reported methods for the green character using Green Analytical Procedure Index (GAPI) and Analytical GREEnness calculator (AGREE) tools and found to be greener.
Collapse
Affiliation(s)
- Christine M El-Maraghy
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, 11787, Cairo, Egypt.
| | - Passant M Medhat
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, 11787, Cairo, Egypt
| | - Rania M Hathout
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Miriam F Ayad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Nermine V Fares
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Nuti S, Fernández-Lodeiro J, Palomo JM, Capelo-Martinez JL, Lodeiro C, Fernández-Lodeiro A. Synthesis, Structural Analysis, and Peroxidase-Mimicking Activity of AuPt Branched Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1166. [PMID: 38998771 PMCID: PMC11243270 DOI: 10.3390/nano14131166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Bimetallic nanomaterials have generated significant interest across diverse scientific disciplines, due to their unique and tunable properties arising from the synergistic combination of two distinct metallic elements. This study presents a novel approach for synthesizing branched gold-platinum nanoparticles by utilizing poly(allylamine hydrochloride) (PAH)-stabilized branched gold nanoparticles, with a localized surface plasmon resonance (LSPR) response of around 1000 nm, as a template for platinum deposition. This approach allows precise control over nanoparticle size, the LSPR band, and the branching degree at an ambient temperature, without the need for high temperatures or organic solvents. The resulting AuPt branched nanoparticles not only demonstrate optical activity but also enhanced catalytic properties. To evaluate their catalytic potential, we compared the enzymatic capabilities of gold and gold-platinum nanoparticles by examining their peroxidase-like activity in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Our findings revealed that the incorporation of platinum onto the gold surface substantially enhanced the catalytic efficiency, highlighting the potential of these bimetallic nanoparticles in catalytic applications.
Collapse
Affiliation(s)
- Silvia Nuti
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Javier Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jerónimo Dias, Num. 12, 2A, Sto António de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Jose M Palomo
- Instituto de Catalisis y Petroleoquimica (ICP), Consejo Superior de Investigaciones Científicas (CSIC) Marie Curie 2, 28049 Madrid, Spain
| | - José-Luis Capelo-Martinez
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jerónimo Dias, Num. 12, 2A, Sto António de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jerónimo Dias, Num. 12, 2A, Sto António de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Adrián Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jerónimo Dias, Num. 12, 2A, Sto António de Caparica, 2825-466 Costa de Caparica, Portugal
| |
Collapse
|
4
|
K Karunakar K, Cheriyan BV, R K, M G, B A. "Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles". BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:64-79. [PMID: 39416696 PMCID: PMC11446369 DOI: 10.1016/j.biotno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology has the advantages of enhanced bioactivity, reduced toxicity, target specificity, and sustained release and NPs can penetrate cell membranes. The small size of silver nanoparticles, AgNPs, large surface area, and unique physicochemical properties contribute to cell lysis and increased permeability of cell membranes used in the field of biomedicine. Functional precursors integrate with phytochemicals to create distinctive therapeutic properties and the stability of the nanoparticles can be enhanced by Surface coatings and encapsulation methods, The current study explores the various synthesis methods and characterization techniques of silver nanoparticles (AgNPs) and highlights their intrinsic activity in therapeutic applications, Anti-cancer activity noted at a concentration range of 5-50 μg/ml and angiogenesis is mitigated at a dosage range of 10-50 μg/ml, Diabetes is controlled within the same concentration. Wound healing is improved at concentrations of 10-50 μg/ml and with a typical range of 10-08 μg/ml for bacteria with antimicrobial capabilities. Advancement of silver nanoparticles with a focus on the future use of AgNPs-coated wound dressings and medical devices to decrease the risk of infection. Chemotherapeutic drugs can be administered by AgNPs, which reduces adverse effects and an improvement in treatment outcomes. AgNPs have been found to improve cell proliferation and differentiation, making them beneficial for tissue engineering and regenerative medicine. Our study highlights emerging patterns and developments in the field of medicine, inferring potential future paths.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Krithikeshvaran R
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Gnanisha M
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Abinavi B
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| |
Collapse
|
5
|
Yang CH, Cho HS, Kim YH, Yoo K, Lim J, Hahm E, Rho WY, Kim YJ, Jun BH. Effects of Raman Labeling Compounds on the Stability and Surface-Enhanced Raman Spectroscopy Performance of Ag Nanoparticle-Embedded Silica Nanoparticles as Tagging Materials. BIOSENSORS 2024; 14:272. [PMID: 38920576 PMCID: PMC11201858 DOI: 10.3390/bios14060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) tagging using silica(SiO2)@Ag nanoparticles (NPs) is easy to handle and is being studied in various fields, including SERS imaging and immunoassays. This is primarily due to its structural advantages, characterized by high SERS activity. However, the Ag NPs introduced onto the SiO2 surface may undergo structural transformation owing to the Ostwald ripening phenomenon under various conditions. As a result, the consistency of the SERS signal decreases, reducing their usability as SERS substrates. Until recently, research has been actively conducted to improve the stability of single Ag NPs. However, research on SiO2@Ag NPs used as a SERS-tagging material is still lacking. In this study, we utilized a Raman labeling compound (RLC) to prevent the structural deformation of SiO2@Ag NPs under various conditions and proposed excellent SiO2@Ag@RLC-Pre NPs as a SERS-tagging material. Using various RLCs, we confirmed that 4-mercaptobenzoic acid (4-MBA) is the RLC that maintains the highest stability for 2 months. These results were also observed for the SiO2@Ag NPs, which were unstable under various pH and temperature conditions. We believe that SERS tags using SiO2@Ag NPs and 4-MBA can be utilized in various applications on based SERS because of the high stability and consistency of the resulting SERS signal.
Collapse
Affiliation(s)
- Cho-Hee Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Jaehong Lim
- Nanophilia Inc., Gwacheon 13840, Republic of Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Won Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea (H.-S.C.)
| |
Collapse
|
6
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Vasile BȘ, Mihaiescu DE, Neacșu IA, Andronescu E, Trușcă R, Holban AM, Hudiță A, Croitoru GA. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int J Mol Sci 2024; 25:5196. [PMID: 38791232 PMCID: PMC11120750 DOI: 10.3390/ijms25105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.
Collapse
Affiliation(s)
- Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Center for Advanced Research on New Materials, Products and Innovative Processes—CAMPUS Research Institute, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Microbiology and Immunology, University of Bucharest, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Chen Z, Gengenbach U, Koker L, Huang L, Mach TP, Reichert KM, Thelen R, Ungerer M. Systematic Investigation of Novel, Controlled Low-Temperature Sintering Processes for Inkjet Printed Silver Nanoparticle Ink. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306865. [PMID: 38126669 DOI: 10.1002/smll.202306865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Functional inks enable manufacturing of flexible electronic devices by means of printing technology. Silver nanoparticle (Ag NP) ink is widely used for printing conductive components. A sintering process is required to obtain sufficient conductivity. Thermal sintering is the most commonly used method, but the heat must be carefully applied to avoid damaging low-temperature substrates such as polymer films. In this work, two alternative sintering methods, damp heat sintering and water sintering are systematically investigated for inkjet-printed Ag tracks on polymer substrates. Both methods allow sintering polyvinyl pyrrolidone (PVP) capped Ag NPs at 85°C. In this way, the resistance is significantly reduced to only 1.7 times that of the samples on polyimide sintered in an oven at 250°C. The microstructure of sintered Ag NPs is analyzed. Taking the states of the capping layer under different conditions into account, the explanation of the sintering mechanism of Ag NPs at low temperatures is presented. Overall, both damp heat sintering and water sintering are viable options for achieving high conductivity of printed Ag tracks. They can broaden the range of substrates available for flexible electronic device fabrication while mitigating substrate damage risks. The choice between them depends on the specific application and the substrate used.
Collapse
Affiliation(s)
- Zehua Chen
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ulrich Gengenbach
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Liane Koker
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Liyu Huang
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Tim P Mach
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Klaus-Martin Reichert
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Richard Thelen
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Ungerer
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Zhu H, Lin M, Li Y, Duan K, Hu J, Chen C, Yu Z, Lee BH. LSPR sensing for in situ monitoring the Ag dissolution of Au@Ag core-shell nanoparticles in biological environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123885. [PMID: 38245969 DOI: 10.1016/j.saa.2024.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Silver nanoparticles (AgNPs) are extensively used as an antibacterial agent, and monitoring the dissolution behavior of AgNPs in native biological environments is critical in both optimizing their performance and regulating their safety. However, current assessment methods rely on sophisticated analytical tools that are off-site and time-consuming with potential underestimations, due to complicated sample preparation. Although localized surface plasmon resonance (LSPR) sensing offers a facile method for the detection of AgNP dissolution, it is limited by low sensitivity and poor nanoparticle stability in native biological environments. Herein, we constructed a highly sensitive and stable LSPR sensor using gold-silver core-shell nanoparticles (Au@AgNPs), in combination with polymeric stabilizing agents, for the direct measurement of the Ag shell dissolution in native biological media. The high sensitivity was attributed to the acute and large LSPR shift generated by bimetallic nanoparticles. The sensor was used for the real-time monitoring of the Ag dissolution of Au@AgNPs during their co-culture with both bacteria and fibroblast cells. The media pH was found to dominate the Ag dissolution process, where Au@AgNPs exhibited bactericidal effects in the bacteria environment with relatively low pH, but they showed little toxicity towards fibroblast cells at pH 7.4. The minimum inhibition concentration of Au@AgNPs for bacterial growth was found similar to that of AgNO3 in terms of released Ag amount. Thus, stabilized Au@AgNPs not only allow the in-situ monitoring of Ag dissolution via LSPR sensing but also constitute an effective antibacterial agent with controlled toxicity, holding great potential for future biomedical and healthcare applications.
Collapse
Affiliation(s)
- Hu Zhu
- Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong 525000, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yang Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Kairui Duan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Jiajun Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Chunbo Chen
- Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong 525000, China.
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| |
Collapse
|
9
|
Youssef MS, Ahmed SI, Mohamed IMA, Abdel-Kareem MM. Biosynthesis, Spectrophotometric Follow-Up, Characterization, and Variable Antimicrobial Activities of Ag Nanoparticles Prepared by Edible Macrofungi. Biomolecules 2023; 13:1102. [PMID: 37509137 PMCID: PMC10377419 DOI: 10.3390/biom13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The biosynthesis of silver nanoparticles (Ag NPs) could play a significant role in the development of commercial antimicrobials. Herein, the biosynthesis of Ag NPs was studied using the edible mushroom Pleurotus floridanus, and following its formation, spectrophotometry was used to detect the best mushroom content, pH, temperature, and silver concentration. After that, the morphology was described via transmission electron microscopy (TEM), and nanoscale-size particles were found ranging from 11 to 13 nm. The best conditions of Ag content and pH were found at 1.0 mM and 11.0, respectively. In addition, the best mushroom extract concentration was found at 30 g/L. According to XRD analysis, the crystal structure of the formed amorphous Ag NPs is cubic with a space group of fm-3m and a space group number of 225. After that, the function groups at the surface of the prepared Ag NPs were studied via FTIR analysis, which indicated the presence of C=O, C-H, and O-H groups. These groups could indicate the presence of mushroom traces in the Ag NPs, which was confirmed via the amorphous characteristics of Ag NPs from the XRD analysis. The prepared Ag NPs have a high impact against different microorganisms, which could be attributed to the ability of Ag NPs to penetrate the cell bacterial wall.
Collapse
Affiliation(s)
- Mohamed S Youssef
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Sanaa Ibrahim Ahmed
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Ibrahim M A Mohamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Marwa M Abdel-Kareem
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
10
|
Kose O, Béal D, Motellier S, Pelissier N, Collin-Faure V, Blosi M, Bengalli R, Costa A, Furxhi I, Mantecca P, Carriere M. Physicochemical Transformations of Silver Nanoparticles in the Oro-Gastrointestinal Tract Mildly Affect Their Toxicity to Intestinal Cells In Vitro: An AOP-Oriented Testing Approach. TOXICS 2023; 11:199. [PMID: 36976964 PMCID: PMC10056345 DOI: 10.3390/toxics11030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of silver nanoparticles (Ag NPs) in food and consumer products suggests the relevance of human oral exposure to these nanomaterials (NMs) and raises the possibility of adverse effects in the gastrointestinal tract. The aim of this study was to investigate the toxicity of Ag NPs in a human intestinal cell line, either uncoated or coated with polyvinylpyrrolidone (Ag PVP) or hydroxyethylcellulose (Ag HEC) and digested in simulated gastrointestinal fluids. Physicochemical transformations of Ag NPs during the different stages of in vitro digestion were identified prior to toxicity assessment. The strategy for evaluating toxicity was constructed on the basis of adverse outcome pathways (AOPs) showing Ag NPs as stressors. It consisted of assessing Ag NP cytotoxicity, oxidative stress, genotoxicity, perturbation of the cell cycle and apoptosis. Ag NPs caused a concentration-dependent loss of cell viability and increased the intracellular level of reactive oxygen species as well as DNA damage and perturbation of the cell cycle. In vitro digestion of Ag NPs did not significantly modulate their toxicological impact, except for their genotoxicity. Taken together, these results indicate the potential toxicity of ingested Ag NPs, which varied depending on their coating but did not differ from that of non-digested NPs.
Collapse
Affiliation(s)
- Ozge Kose
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - David Béal
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - Sylvie Motellier
- Univ. Grenoble-Alpes, Lab Measure Securing & Environm, LITEN, DTNM, STDC, CEA, 17 Av Martyrs, 38000 Grenoble, France
| | - Nathalie Pelissier
- Univ. Grenoble-Alpes, Lab of Advanced Characterization for Energy, LITEN, DTNM, STDC, CEA, 17 Av Martyrs, 38000 Grenoble, France
| | - Véronique Collin-Faure
- Univ. Grenoble-Alpes, CEA, CNRS UMR5249, IRIG DIESE CBM, Chem & Biol Met, 38054 Grenoble, France
| | - Magda Blosi
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Rossella Bengalli
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Anna Costa
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Irini Furxhi
- Transgero Ltd., Newcastle West, V42 V384 Limerick, Ireland
| | - Paride Mantecca
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| |
Collapse
|
11
|
Characterization and Biological Studies of Synthesized Titanium Dioxide Nanoparticles from Leaf Extract of Juniperus phoenicea (L.) Growing in Taif Region, Saudi Arabia. Processes (Basel) 2023. [DOI: 10.3390/pr11010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Green synthesis of metal nanoparticles in nanosized form has acquired great interest in the area of nanomedicine as an environmentally friendly and cost-effective alternative compared to other chemical and physical methods. This study deals with the eco-friendly green synthesis of titanium dioxide nanoparticles (TiO2 NPs) utilizing Juniperus phoenicea leaf extract and their characterization. The biosynthesis of TiO2 NPs was completed in 3 h and confirmed by UV-Vis spectroscopy, a strong band at 205.4 nm distinctly revealed the formation of NPs. Transmissions electron microscopy (TEM) analysis showed the synthesized TiO2 NPs are spherical in shape, with a diameter in a range of 10–30 nm. The XRD major peak at 27.1° congruent with the (110) lattice plane of tetragonal rutile TiO2 phase. Dynamic light scattering (DLS) analysis revealed synthesized TiO2 NPs average particle size (hydrodynamic diameter) of (74.8 ± 0.649) nm. Fourier transmission infrared (FTIR) revealed the bioactive components present in the leaf extract, which act as reducing and capping agents. The antimicrobial efficacy of synthesized TiO2NPs against, Staphylococcus aureus, and Bacillus subtilis (Gram-positive), Escherichia coli and Klebsiella pneumoniae (Gram-negative), Yeast strain (Saccharomyces cerevisiae) and fungi (Aspergillus niger, and Penicillium digitatum) assayed by a disc diffusion method. TiO2NPs inhibited all tested strains by mean inhibition zone (MIZ), which ranged from the lowest 15.7 ± 0.45 mm against K. pneumoniae to the highest 30.3 ± 0.25 against Aspergillus niger. The lowest minimum inhibitory concentration (MIC) and bactericidal (MBC) values were 20 μL/mL and 40 μL/mL of TiO2NPs were observed against Asp. niger. Moreover, it showed significant inhibitory activity against human ovarian adenocarcinoma cells with IC50 = 50.13 ± 1.65 µg/mL. The findings concluded that biosynthesized TiO2 NPs using Juniperus phoenicea leaf extract can be used in medicine as curative agents according to their in vitro antibacterial, antifungal, and cytotoxic activities.
Collapse
|
12
|
Green Synthesized Zinc Oxide Nanoparticles Based on Cestrum diurnum L. of Potential Antiviral Activity against Human Corona 229-E Virus. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010266. [PMID: 36615461 PMCID: PMC9822259 DOI: 10.3390/molecules28010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022]
Abstract
SARS-CoV-2 has caused more than 596 million infections and 6 million fatalities globally. Looking for urgent medication for prevention, treatment, and rehabilitation is obligatory. Plant extracts and green synthesized nanoparticles have numerous biological activities, including antiviral activity. HPLC analysis of C. dirnum L. leaf extract showed that catechin, ferulic acid, chlorogenic acid, and syringic acid were the most major compounds, with concentrations of 1425.16, 1004.68, 207.46, and 158.95 µg/g, respectively. Zinc nanoparticles were biosynthesized using zinc acetate and C. dirnum extract. TEM analysis revealed that the particle size of ZnO-NPs varied between 3.406 and 4.857 nm. An XRD study showed the existence of hexagonal crystals of ZnO-NPs with an average size of 12.11 nm. Both ZnO-NPs (IC50 = 7.01 and CC50 = 145.77) and C. dirnum L. extract (IC50 = 61.15 and CC50 = 145.87 µg/mL) showed antiviral activity against HCOV-229E, but their combination (IC50 = 2.41 and CC50 = 179.23) showed higher activity than both. Molecular docking was used to investigate the affinity of some metabolites against the HCOV-229E main protease. Chlorogenic acid, solanidine, and catchin showed high affinity (-7.13, -6.95, and -6.52), compared to the ligand MDP (-5.66 Kcal/mol). Cestrum dinurum extract and ZnO-NPs combination should be subjected to further studies to be used as an antiviral drug.
Collapse
|
13
|
Municoy S, Antezana PE, Bellino MG, Desimone MF. Development of 3D-Printed Collagen Scaffolds with In-Situ Synthesis of Silver Nanoparticles. Antibiotics (Basel) 2022; 12:antibiotics12010016. [PMID: 36671217 PMCID: PMC9855044 DOI: 10.3390/antibiotics12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
UV-irradiation method has grown as an alternative approach to in situ synthetize silver nanoparticles (AgNPs) for avoiding the use of toxic reducing agents. In this work, an antimicrobial material by in situ synthesizing AgNPs within 3D-printed collagen-based scaffolds (Col-Ag) was developed. By modifying the concentration of AgNO3 (0.05 and 0.1 M) and UV irradiation time (2 h, 4 h, and 6 h), the morphology and size of the in situ prepared AgNPs could be controlled. As a result, star-like silver particles of around 23 ± 4 μm and spherical AgNPs of 220 ± 42 nm were obtained for Ag 0.05 M, while for Ag 0.1 M cubic particles from 0.3 to 1.0 μm and round silver precipitates of 3.0 ± 0.4 μm were formed in the surface of the scaffolds at different UV irradiation times. However, inside the material AgNPs of 10-28 nm were obtained. The DSC thermal analysis showed that a higher concentration of Ag stabilizes the 3D-printed collagen-based scaffolds, while a longer UV irradiation interval produces a decrease in the denaturation temperature of collagen. The enzymatic degradation assay also revealed that the in situ formed AgNPs act as stabilizing and reinforcement agent which also improve the swelling capacity of collagen-based material. Finally, antimicrobial activity of Col-Ag was studied, showing high bactericidal efficiency against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. These results showed that the UV irradiation method was really attractive to modulate the size and shape of in situ synthesized AgNPs to develop antimicrobial 3D-printed collagen scaffolds with different thermal, swelling and degradation properties.
Collapse
Affiliation(s)
- Sofia Municoy
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Martín Gonzalo Bellino
- Instituto de Nanociencia y Nanotecnología, Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín 1650, Argentina
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- Correspondence:
| |
Collapse
|
14
|
Ivanišević I, Kovačić M, Zubak M, Ressler A, Krivačić S, Katančić Z, Gudan Pavlović I, Kassal P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234252. [PMID: 36500875 PMCID: PMC9739383 DOI: 10.3390/nano12234252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/14/2023]
Abstract
The large-scale manufacturing of flexible electronics is nowadays based on inkjet printing technology using specially formulated conductive inks, but achieving adequate wetting of different surfaces remains a challenge. In this work, the development of a silver nanoparticle-based functional ink for printing on flexible paper and plastic substrates is demonstrated. Amphiphilic silver nanoparticles with narrow particle size distribution and good dispersibility were prepared via a two-step wet chemical synthesis procedure. First, silver nanoparticles capped with poly(acrylic acid) were prepared, followed by an amidation reaction with 3-morpholynopropylamine (MPA) to increase their lipophilicity. Density functional theory (DFT) calculations were performed to study the interactions between the particles and the dispersion medium in detail. The amphiphilic nanoparticles were dispersed in solvents of different polarity and their physicochemical and rheological properties were determined. A stable ink containing 10 wt% amphiphilic silver nanoparticles was formulated and inkjet-printed on different surfaces, followed by intense pulsed light (IPL) sintering. Low sheet resistances of 3.85 Ω sq-1, 0.57 Ω sq-1 and 19.7 Ω sq-1 were obtained for the paper, coated poly(ethylene terephthalate) (PET) and uncoated polyimide (PI) flexible substrates, respectively. Application of the nanoparticle ink for printed electronics was demonstrated via a simple flexible LED circuit.
Collapse
Affiliation(s)
- Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, P.O. Box 589, 33014 Tampere, Finland
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Iva Gudan Pavlović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
15
|
Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol 2022; 10:1001572. [PMID: 36619393 PMCID: PMC9822575 DOI: 10.3389/fbioe.2022.1001572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
With the rapid progress of nanotechnology, various nanoparticles (NPs) have been applicated in our daily life. In the field of nanotechnology, metal-based NPs are an important component of engineered NPs, including metal and metal oxide NPs, with a variety of biomedical applications. However, the unique physicochemical properties of metal-based NPs confer not only promising biological effects but also pose unexpected toxic threats to human body at the same time. For safer application of metal-based NPs in humans, we should have a comprehensive understanding of NP toxicity. In this review, we summarize our current knowledge about metal-based NPs, including the physicochemical properties affecting their toxicity, mechanisms of their toxicity, their toxicological assessment, the potential strategies to mitigate their toxicity and current status of regulatory movement on their toxicity. Hopefully, in the near future, through the convergence of related disciplines, the development of nanotoxicity research will be significantly promoted, thereby making the application of metal-based NPs in humans much safer.
Collapse
Affiliation(s)
- Naiding Zhang
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guiya Xiong
- Department of Science and Research, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Zhenjie Liu,
| |
Collapse
|
16
|
Wu K, Li H, Cui X, Feng R, Chen W, Jiang Y, Tang C, Wang Y, Wang Y, Shen X, Liu Y, Lynch M, Long H. Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Antimicrob Agents Chemother 2022; 66:e0062822. [PMID: 36094196 PMCID: PMC9578424 DOI: 10.1128/aac.00628-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Because of their extremely broad spectrum and strong biocidal power, nanoparticles of metals, especially silver (AgNPs), have been widely applied as effective antimicrobial agents against bacteria, fungi, and so on. However, the mutagenic effects of AgNPs and resistance mechanisms of target cells remain controversial. In this study, we discover that AgNPs do not speed up resistance mutation generation by accelerating genome-wide mutation rate of the target bacterium Escherichia coli. AgNPs-treated bacteria also show decreased expression in quorum sensing (QS), one of the major mechanisms leading to population-level drug resistance in microbes. Nonetheless, these nanomaterials are not immune to resistance development by bacteria. Gene expression analysis, experimental evolution in response to sublethal or bactericidal AgNPs treatments, and gene editing reveal that bacteria acquire resistance mainly through two-component regulatory systems, especially those involved in metal detoxification, osmoregulation, and energy metabolism. Although these findings imply low mutagenic risks of nanomaterial-based antimicrobial agents, they also highlight the capacity for bacteria to evolve resistance.
Collapse
Affiliation(s)
- Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Haichao Li
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Xiao Cui
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Ruobing Feng
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Weizhe Chen
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yuchen Jiang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Chao Tang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Bashir A, Khan S, Bashmal S, Iqbal N, Ullah S, Ali L. Designing Highly Efficient Temperature Controller for Nanoparticles Hyperthermia. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3539. [PMID: 36234672 PMCID: PMC9565335 DOI: 10.3390/nano12193539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This paper presents various control system design techniques for temperature control of Magnetic Fluid hyperthermia. The purpose of this research is to design a cost-effective, efficient, and practically implementable temperature controller for Magnetic Fluid hyperthermia, which is presently under research as a substitute to the radiation and chemotherapy treatment of cancer. The principle of this phenomenon centers on the greater sensitivity of tumor cells to changes in temperature in comparison to healthy cells. Once the nanoparticles reach the desired tissue, it can then be placed in a varying magnetic field to dissipate the heat locally by raising the temperature to 45 °C in order to kill cancerous cells. One of the challenging tasks is to maintain the temperature strictly at desired point i.e., 45 °C. Temperature controller for magnetic fluid hyperthermia provides the tight control of temperature in order to avoid folding of proteins and save the tissues around the cancerous tissue from getting destroyed. In contrast with most of the existing research on this topic, which are based on linear control strategies or their improved versions, the novelty of this research lies in applying nonlinear control technique like Sliding Mode Control (SMC) to accurately control the temperature at desired value. A comparison of the control techniques is presented in this paper, based on reliability, robustness, precision and the ability of the controller to handle the non-linearities that are faced during the treatment of cancer. SMC showed promising results in terms of settling time and rise time. Steady state error was also reduced to zero using this technique.
Collapse
Affiliation(s)
- Adeel Bashir
- Department of Electrical Engineering, COMSATS University, Islamabad 45550, Pakistan
| | - Sikandar Khan
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem Bashmal
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Naveed Iqbal
- Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Center of Energy and Geo Processing, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sami Ullah
- K. A. CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Liaqat Ali
- College of Civil Engineering & Architecture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Mitrevska K, Cernei N, Michalkova H, Rodrigo MAM, Sivak L, Heger Z, Zitka O, Kopel P, Adam V, Milosavljevic V. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front Oncol 2022; 12:986045. [PMID: 36212465 PMCID: PMC9535364 DOI: 10.3389/fonc.2022.986045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.
Collapse
Affiliation(s)
- Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | | | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- *Correspondence: Vedran Milosavljevic,
| |
Collapse
|
19
|
Alotaibi AM, Alsaleh NB, Aljasham AT, Tawfik EA, Almutairi MM, Assiri MA, Alkholief M, Almutairi MM. Silver Nanoparticle-Based Combinations with Antimicrobial Agents against Antimicrobial-Resistant Clinical Isolates. Antibiotics (Basel) 2022; 11:1219. [PMID: 36139997 PMCID: PMC9495250 DOI: 10.3390/antibiotics11091219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing prevalence of antimicrobial-resistant (AMR) bacteria along with the limited development of antimicrobials warrant investigating novel antimicrobial modalities. Emerging inorganic engineered nanomaterials (ENMs), most notably silver nanoparticles (AgNPs), have demonstrated superior antimicrobial properties. However, AgNPs, particularly those of small size, could exert overt toxicity to mammalian cells. This study investigated whether combining AgNPs and conventional antimicrobials would produce a synergistic response and determined the optimal and safe minimum inhibitory concentration (MIC) range against several wild-type Gram-positive and -negative strains and three different clinical isolates of AMR Klebsiella pneumoniae. Furthermore, the cytotoxicity of the synergistic combinations was assessed in a human hepatocyte model. The results showed that the AgNPs (15-25 nm) were effective against Gram-negative bacteria (MIC of 16-128 µg/mL) but not Gram-positive strains (MIC of 256 µg/mL). Both wild-type and AMR K. pneumoniae had similar MIC values following exposure to AgNPs. Importantly, co-exposure to combinations of AgNPs and antimicrobial agents, including kanamycin, colistin, rifampicin, and vancomycin, displayed synergy against both wild-type and AMR K. pneumoniae isolates (except for vancomycin against AMR strain I). Notably, the tested combinations demonstrated no to minimal toxicity against hepatocytes. Altogether, this study indicates the potential of combining AgNPs with conventional antimicrobials to overcome AMR bacteria.
Collapse
Affiliation(s)
- Areej M. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanoud T. Aljasham
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Nahari MH, Al Ali A, Asiri A, Mahnashi MH, Shaikh IA, Shettar AK, Hoskeri J. Green Synthesis and Characterization of Iron Nanoparticles Synthesized from Aqueous Leaf Extract of Vitex leucoxylon and Its Biomedical Applications. NANOMATERIALS 2022; 12:nano12142404. [PMID: 35889627 PMCID: PMC9322898 DOI: 10.3390/nano12142404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022]
Abstract
The cold extraction method was used to obtain the aqueous extract of Vitex leucoxylon leaves in a ratio of 1:10. Iron nanoparticles (FeNPs) were synthesized using aqueous leaf extract of V. leucoxylon as a reducing agent. The phytoreducing approach was used to make FeNPs by mixing 1 mL of plant extract with 1 mM of ferric sulfate. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), and energy-dispersive X-ray spectroscopy were used to examine the synthesized FeNPs. The reducing reaction was shown by a change in the color of the solution, and the formation of black color confirms that FeNPs have been formed. The greatest absorption peak (max) was found at 395 nm in UV-Vis spectral analysis. The FTIR spectra of V. leucoxylon aqueous leaf extract showed shifts in some peaks, namely 923.96 cm−1 and 1709.89 cm−1, with functional groups carboxylic acids, unsaturated aldehydes, and ketones, which were lacking in the FTIR spectra of FeNPs and are responsible for FeNPs formation. FeNPs with diameters between 45 and 100 nm were observed in SEM images. The creation of FeNPs was confirmed by EDX, which shows a strong signal in the metallic iron region at 6–8 Kev. XRD revealed a crystalline nature and an average diameter of 136.43 nm. Antioxidant, anti-inflammatory, cytotoxic, and wound healing in vitro tests reported significant activity of the FeNPs. The cumulative findings of the present study indicate that the green synthesis of FeNPs boosts its biological activity and may serve as a possible dermal wound-healing agent and cytotoxic agent against cancer. Future study is needed on the identification of mechanisms involved in the synthesis of FeNPs by V. leucoxylon and its biomedical applications.
Collapse
Affiliation(s)
- Mohammed H. Nahari
- Department of Clinical Laboratory Sciences, Najran University, Najran 66216, Saudi Arabia;
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Abdulaziz Asiri
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 66216, Saudi Arabia
- Correspondence: ; Tel.: +966-508734539
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66216, Saudi Arabia;
| | - Arun K. Shettar
- Division of Preclinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd., Hubli 580031, Karnataka, India;
| | - Joy Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women’s University, Vijayapura 586108, Karnataka, India;
| |
Collapse
|
21
|
Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int J Mol Sci 2022; 23:839. [PMID: 35055024 PMCID: PMC8777983 DOI: 10.3390/ijms23020839] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
As an emerging new class, metal nanoparticles and especially silver nanoparticles hold great potential in the field of cancer biology. Due to cancer-specific targeting, the consequently attenuated side-effects and the massive anti-cancer features render nanoparticle therapeutics desirable platforms for clinically relevant drug development. In this review, we highlight those characteristics of silver nanoparticle-based therapeutic concepts that are unique, exploitable, and achievable, as well as those that represent the critical hurdle in their advancement to clinical utilization. The collection of findings presented here will describe the features that distinguish silver nanoparticles from other anti-cancer agents and display the realistic opportunities and implications in oncotherapeutic innovations to find out whether cancer therapy by silver nanoparticles is fiction or reality.
Collapse
Affiliation(s)
- Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, 660 Route des Lucioles, 06560 Valbonne, France
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
| | - Mohana K. Gopisetty
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
- Interdisciplinary Center of Excellence, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Tér 1, H-6720 Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
| |
Collapse
|
22
|
Otari SV, Kalia VC, Bisht A, Kim IW, Lee JK. Green Synthesis of Silver-Decorated Magnetic Particles for Efficient and Reusable Antimicrobial Activity. MATERIALS 2021; 14:ma14247893. [PMID: 34947488 PMCID: PMC8709440 DOI: 10.3390/ma14247893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
Metal and metal hybrid nanostructures have shown tremendous application in the biomedical and catalytic fields because of their plasmonic and catalytic properties. Here, a green and clean method was employed for the synthesis of silver nanoparticle (Ag NP)-SiO2-Fe2O3 hybrid microstructures, and biomolecules from green tea extracts were used for constructing the hybrid structures. The SiO2-Fe2O3 structures were synthesized using an ethanolic green tea leaf extract to form Bio-SiO2-Fe2O3 (BSiO2-Fe2O3) structures. Biochemical studies demonstrated the presence of green tea biomolecules in the BSiO2 layer. Reduction of the silver ions was performed by a BSiO2 layer to form Ag NPs of 5–10 nm in diameter in and on the BSiO2-Fe2O3 microstructure. The reduction process was observed within 600 s, which is faster than that reported elsewhere. The antimicrobial activity of the Ag-BSiO2-Fe2O3 hybrid structure was demonstrated against Staphylococcus aureus and Escherichia coli, and the nanostructures were further visualized using confocal laser scanning microscopy (CLSM). The magnetic properties of the Ag-BSiO2-Fe2O3 hybrid structure were used for studying reusable antimicrobial activity. Thus, in this study, we provide a novel green route for the construction of a biomolecule-entrapped SiO2-Fe2O3 structure and their use for the ultra-fast formation of Ag NPs to form antimicrobial active multifunctional hybrid structures.
Collapse
Affiliation(s)
- Sachin V. Otari
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
| | - Aarti Bisht
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
- Institute of SK-KU Biomaterials, Konkuk University, Seoul 05029, Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (S.V.O.); (V.C.K.); (A.B.); (I.-W.K.)
- Correspondence: ; Tel.: +82-2-450-3505
| |
Collapse
|