1
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2025; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Xu X, Sun Y, Zhang A, Li S, Zhang S, Chen S, Lou C, Cai L, Chen Y, Luo C, Yin WB. Quantitative Characterization of Gene Regulatory Circuits Associated With Fungal Secondary Metabolism to Discover Novel Natural Products. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407195. [PMID: 39467708 DOI: 10.1002/advs.202407195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Microbial genetic circuits are vital for regulating gene expression and synthesizing bioactive compounds. However, assessing their strength and timing, especially in multicellular fungi, remains challenging. Here, an advanced microfluidic platform is combined with a mathematical model enabling precise characterization of fungal gene regulatory circuits (GRCs) at the single-cell level. Utilizing this platform, the expression intensity and timing of 30 transcription factor-promoter combinations derived from two representative fungal GRCs, using the model fungus Aspergillus nidulans are determined. As a proof of concept, the selected GRC combination is utilized to successfully refactor the biosynthetic pathways of bioactive molecules, precisely control their production, and activate the expression of the silenced biosynthetic gene clusters (BGCs). This study provides insights into microbial gene regulation and highlights the potential of platform in fungal synthetic biology applications and the discovery of novel natural products.
Collapse
Affiliation(s)
- Xinran Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanhong Sun
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Anxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sijia Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Shu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Sijing Chen
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Chunbo Lou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yihua Chen
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
- Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Tian Y, Wang S, Ma Y, Li Y, Li R, Fu Y, Zhang R, Zhu R, Zhao F. Gene expression screening and cell factory engineering for enhancing echinocandin B production in Aspergillus nidulans NRRL8112. Microb Cell Fact 2024; 23:305. [PMID: 39533300 PMCID: PMC11559128 DOI: 10.1186/s12934-024-02577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Echinocandin B (ECB) is a key precursor of the antifungal drug anidulafungin and its biosynthesis occurs via ani gene cluster in Aspergillus nidulans NRRL8112. Strain improvement for industrial ECB production has mainly relied on mutation breeding due to the lack of genetic tools. RESULTS Here, a CRISPR-base-editing tool was developed in A. nidulans NRRL8112 for simultaneous inactivation of the nkuA gene and two marker genes, pryoA and riboB, which enabled efficient genetic manipulation. Then, in-vivo plasmid assembly was harnessed for ani gene expression screening, identifying the rate-limiting enzyme AniA and a pathway-specific transcription factor AniJ. Stepwise titer enhancement was achieved by overexpressing aniA and/or aniJ, and ECB production reached 1.5 g/L during 5-L fed-batch fermentation, an increase of ~ 30-fold compared with the parent strain. CONCLUSION This study, for the first time, revealed the regulatory mechanism of ECB biosynthesis and harnessed genetic engineering for the development of an efficient ECB-producing strain.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Shumin Wang
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Youchu Ma
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Youxiu Fu
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Zhang
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Zhu
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Fanglong Zhao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
4
|
Jangid H, Garg S, Kashyap P, Karnwal A, Shidiki A, Kumar G. Bioprospecting of Aspergillus sp. as a promising repository for anti-cancer agents: a comprehensive bibliometric investigation. Front Microbiol 2024; 15:1379602. [PMID: 38812679 PMCID: PMC11133633 DOI: 10.3389/fmicb.2024.1379602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer remains a significant global health challenge, claiming nearly 10 million lives in 2020 according to the World Health Organization. In the quest for novel treatments, fungi, especially Aspergillus species, have emerged as a valuable source of bioactive compounds with promising anticancer properties. This study conducts a comprehensive bibliometric analysis to map the research landscape of Aspergillus in oncology, examining publications from 1982 to the present. We observed a marked increase in research activity starting in 2000, with a notable peak from 2005 onwards. The analysis identifies key contributors, including Mohamed GG, who has authored 15 papers with 322 citations, and El-Sayed Asa, with 14 papers and 264 citations. Leading countries in this research field include India, Egypt, and China, with King Saud University and Cairo University as the leading institutions. Prominent research themes identified are "endophyte," "green synthesis," "antimicrobial," "anti-cancer," and "biological activities," indicating a shift towards environmentally sustainable drug development. Our findings highlight the considerable potential of Aspergillus for developing new anticancer therapies and underscore the necessity for further research to harness these natural compounds for clinical use.
Collapse
Affiliation(s)
- Himanshu Jangid
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Sonu Garg
- Department of Biotechnology, Mahatma Jyoti Rao Phoole University, Jaipur, Rajasthan, India
| | - Piyush Kashyap
- School of Agriculture, Lovely Professional University, Jalandhar, Punjab, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Amrullah Shidiki
- Department of Microbiology, National Medical College & Teaching Hospital, Birgunj, Nepal
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| |
Collapse
|
5
|
Seo HW, Wassano NS, Amir Rawa MS, Nickles GR, Damasio A, Keller NP. A Timeline of Biosynthetic Gene Cluster Discovery in Aspergillus fumigatus: From Characterization to Future Perspectives. J Fungi (Basel) 2024; 10:266. [PMID: 38667937 PMCID: PMC11051388 DOI: 10.3390/jof10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of A. fumigatus BGC discovery and find that initial advances centered around the commonly expressed SMs where chemical structure informed rationale identification of the producing BGC (e.g., gliotoxin, fumigaclavine, fumitremorgin, pseurotin A, helvolic acid, fumiquinazoline). Further advances followed the transcriptional profiling of a ΔlaeA mutant, which aided in the identification of endocrocin, fumagillin, hexadehydroastechrome, trypacidin, and fumisoquin BGCs. These SMs and their precursors are the commonly produced metabolites in most A. fumigatus studies. Characterization of other BGC/SM pairs required additional efforts, such as induction treatments, including co-culture with bacteria (fumicycline/neosartoricin, fumigermin) or growth under copper starvation (fumivaline, fumicicolin). Finally, four BGC/SM pairs were discovered via overexpression technologies, including the use of heterologous hosts (fumicycline/neosartoricin, fumihopaside, sphingofungin, and sartorypyrone). Initial analysis of the two most studied A. fumigatus isolates, Af293 and A1160, suggested that both harbored ca. 34-36 BGCs. However, an examination of 264 available genomes of A. fumigatus shows up to 20 additional BGCs, with some strains showing considerable variations in BGC number and composition. These new BGCs present a new frontier in the future of secondary metabolism characterization in this important species.
Collapse
Affiliation(s)
- Hye-Won Seo
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Natalia S. Wassano
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Mira Syahfriena Amir Rawa
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Grant R. Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
6
|
Sasse C, Bastakis E, Bakti F, Höfer AM, Zangl I, Schüller C, Köhler AM, Gerke J, Krappmann S, Finkernagel F, Harting R, Strauss J, Heimel K, Braus GH. Induction of Aspergillus fumigatus zinc cluster transcription factor OdrA/Mdu2 provides combined cellular responses for oxidative stress protection and multiple antifungal drug resistance. mBio 2023; 14:e0262823. [PMID: 37982619 PMCID: PMC10746196 DOI: 10.1128/mbio.02628-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.
Collapse
Affiliation(s)
- Christoph Sasse
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Annalena M. Höfer
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabella Zangl
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Sven Krappmann
- Institute of Microbiology–Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Center for Infection Research (ECI) and Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Core Facility Bioinformatics, Philipps University, Marburg, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Wang P, Park HS, Wang W, Yin WB. Editorial: Gene regulation of fungal secondary metabolism. Front Microbiol 2023; 14:1260849. [PMID: 37655343 PMCID: PMC10466026 DOI: 10.3389/fmicb.2023.1260849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan, China
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Wenjie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
9
|
Genetic Variation in Transcription Factor Binding Sites. Int J Mol Sci 2023; 24:ijms24055038. [PMID: 36902467 PMCID: PMC10003035 DOI: 10.3390/ijms24055038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
The interaction between transcription factors (TFs) and DNA is the core process that determines the state of a cell's transcriptome [...].
Collapse
|
10
|
Umemura M, Tamano K. How to improve the production of peptidyl compounds in filamentous fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1085624. [PMID: 37746201 PMCID: PMC10512285 DOI: 10.3389/ffunb.2022.1085624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 09/26/2023]
Abstract
Peptidyl compounds produced by filamentous fungi, which are nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs), are rich sources of bioactive compounds with a wide variety of structures. Some of these peptidyl compounds are useful as pharmaceuticals and pesticides. However, for industrial use, their low production often becomes an obstacle, and various approaches have been challenged to overcome this weakness. In this article, we summarize the successful attempts to increase the production of NRPs and RiPPs in filamentous fungi and present our perspectives on how to improve it further.
Collapse
Affiliation(s)
- Maiko Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
11
|
Wang W, Liang X, Li Y, Wang P, Keller NP. Genetic Regulation of Mycotoxin Biosynthesis. J Fungi (Basel) 2022; 9:jof9010021. [PMID: 36675842 PMCID: PMC9861139 DOI: 10.3390/jof9010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination in food poses health hazards to humans. Current methods of controlling mycotoxins still have limitations and more effective approaches are needed. During the past decades of years, variable environmental factors have been tested for their influence on mycotoxin production leading to elucidation of a complex regulatory network involved in mycotoxin biosynthesis. These regulators are putative targets for screening molecules that could inhibit mycotoxin synthesis. Here, we summarize the regulatory mechanisms of hierarchical regulators, including pathway-specific regulators, global regulators and epigenetic regulators, on the production of the most critical mycotoxins (aflatoxins, patulin, citrinin, trichothecenes and fumonisins). Future studies on regulation of mycotoxins will provide valuable knowledge for exploring novel methods to inhibit mycotoxin biosynthesis in a more efficient way.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: (W.W.); (N.P.K.)
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (W.W.); (N.P.K.)
| |
Collapse
|
12
|
Quantitative characterization of filamentous fungal promoters on a single-cell resolution to discover cryptic natural products. SCIENCE CHINA LIFE SCIENCES 2022; 66:848-860. [PMID: 36287342 DOI: 10.1007/s11427-022-2175-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022]
Abstract
Characterization of filamentous fungal regulatory elements remains challenging because of time-consuming transformation technologies and limited quantitative methods. Here we established a method for quantitative assessment of filamentous fungal promoters based on flow cytometry detection of the superfolder green fluorescent protein at single-cell resolution. Using this quantitative method, we acquired a library of 93 native promoter elements from Aspergillus nidulans in a high-throughput format. The strengths of identified promoters covered a 37-fold range by flow cytometry. PzipA and PsltA were identified as the strongest promoters, which were 2.9- and 1.5-fold higher than that of the commonly used constitutive promoter PgpdA. Thus, we applied PzipA and PsltA to activate the silent nonribosomal peptide synthetase gene Afpes1 from Aspergillus fumigatus in its native host and the heterologous host A. nidulans. The metabolic products of Afpes1 were identified as new cyclic tetrapeptide derivatives, namely, fumiganins A and B. Our method provides an innovative strategy for natural product discovery in fungi.
Collapse
|
13
|
Pang G, Sun T, Ding M, Li J, Zhao Z, Shen Q, Cai FM. Characterization of an Exceptional Fungal Mutant Enables the Discovery of the Specific Regulator of a Silent PKS-NRPS Hybrid Biosynthetic Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11769-11781. [PMID: 36084284 DOI: 10.1021/acs.jafc.2c03550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Filamentous fungi produce a great variety of bioactive secondary metabolites essential for their biotic interactions. Here, we characterized an exceptional Trichoderma mutant overproducing harzianic acids (HAs) with exclusively highly antifungal activity against numerous fungi from different ecological groups. Interestingly, two transcription factors (TFs) were identified in this HA biosynthetic gene cluster (hac BGC), with HacI regulating the biosynthetic genes and HacF being likely responsible for the product transportation essential for the self-detoxification of the fungus from the produced HAs. Evolutionary analysis suggested that the sparse distribution of hac BGC in many environmental opportunistic fungi including several species from Trichoderma, Penicillium, and Aspergillus could result from lateral gene transfers and pervasive gene losses in different lineages of Pezizomycotina. Taken together, we propose that the production of HAs by fungi is to inhibit the growth of the surrounding partners to secure an exclusive position in a competitive community.
Collapse
Affiliation(s)
- Guan Pang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Ding
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Zhao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng M Cai
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
14
|
Yang K, Tian J, Keller NP. Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review. Environ Microbiol 2022; 24:2857-2881. [PMID: 35645150 PMCID: PMC9545273 DOI: 10.1111/1462-2920.16034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022]
Abstract
Post‐translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co‐localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are ‘turned off’ under laboratory condition. Efforts have been made to ‘turn on’ these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non‐histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| |
Collapse
|
15
|
Wang G, Ran H, Fan J, Keller NP, Liu Z, Wu F, Yin WB. Fungal-fungal cocultivation leads to widespread secondary metabolite alteration requiring the partial loss-of-function VeA1 protein. SCIENCE ADVANCES 2022; 8:eabo6094. [PMID: 35476435 PMCID: PMC9045611 DOI: 10.1126/sciadv.abo6094] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 05/02/2023]
Abstract
Microbial communication has attracted notable attention as an indicator of microbial interactions that lead to marked alterations of secondary metabolites (SMs) in varied environments. However, the mechanisms responsible for SM regulation are not fully understood, especially in fungal-fungal interactions. Here, cocultivation of an endophytic fungus Epicoccum dendrobii with the model fungus Aspergillus nidulans and several other filamentous fungi triggered widespread alteration of SMs. Multiple silent biosynthetic gene clusters in A. nidulans were activated by transcriptome and metabolome analysis. Unprecedentedly, gene deletion and replacement proved that a partial loss-of-function VeA1 protein, but not VeA, was associated with the widespread SM changes in both A. nidulans and A. fumigatus during cocultivation. VeA1 regulation required the transcription factor SclB and the velvet complex members LaeA and VelB for producing aspernidines as representative formation of SMs in A. nidulans. This study provides new insights into the mechanism that trigger metabolic changes during fungal-fungal interactions.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huomiao Ran
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhiguo Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fan Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
16
|
Nickles G, Ludwikoski I, Bok JW, Keller NP. Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with Aspergillus fumigatus as a Case Study. Curr Protoc 2021; 1:e321. [PMID: 34958718 DOI: 10.1002/cpz1.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fungal secondary metabolites (SMs) have captured the interest of natural products researchers in academia and industry for decades. In recent years, the high rediscovery rate of previously characterized metabolites is making it increasingly difficult to uncover novel compounds. Additionally, the vast majority of fungal SMs reside in genetically intractable fungi or are silent under normal laboratory conditions in genetically tractable fungi. The fungal natural products community has broadly overcome these barriers by altering the physical growth conditions of the fungus and heterologous/homologous expression of biosynthetic gene cluster regulators or proteins. The protocols described here summarize vital methodologies needed when researching SM production in fungi. We also summarize the growth conditions, genetic backgrounds, and extraction protocols for every published SM in Aspergillus fumigatus, enabling readers to easily replicate the production of previously characterized SMs. Readers will also be equipped with the tools for developing their own strategy for expressing and extracting SMs from their given fungus or a suitable heterologous model system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Making glycerol stocks from spore suspensions Alternate Protocol 1: Creating glycerol stocks from non-sporulating filamentous fungi Basic Protocol 2: Activating spore-suspension glycerol stocks Basic Protocol 3: Extracting secondary metabolites from Aspergillus spp grown on solid medium Alternate Protocol 2: Extracting secondary metabolites from Aspergillus spp using ethyl acetate Alternate Protocol 3: High-volume metabolite extraction using ethyl acetate Alternate Protocol 4: Extracting secondary metabolites from Aspergillus spp in liquid medium Support Protocol: Creating an overlay culture Basic Protocol 4: Extracting DNA from filamentous fungi Basic Protocol 5: Creating a DNA construct with double-joint PCR Alternate Protocol 5: Creating a DNA construct with yeast recombineering Basic Protocol 6: Transformation of Aspergillus spp Basic Protocol 7: Co-culturing fungi and bacteria for extraction of secondary metabolites.
Collapse
Affiliation(s)
- Grant Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Isabelle Ludwikoski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|