1
|
Wu KY, Yao FH, Ren XM, Hang XD, Bai YF, Qi SH. Multi-target anti-MRSA mechanism and antibiotic synergistic effect of marine alkaloid Ascomylactam A in vitro and in vivo against clinical MRSA strains. Biochem Pharmacol 2024; 232:116697. [PMID: 39643122 DOI: 10.1016/j.bcp.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), as a kind of multi-drug resistant bacteria, often causes serious sanitary infection problems. Marine fungi are seen as a promising source of lead compounds for antibiotics. In this research, the antibacterial activity, antibiotic synergistic effect and mechanism of the alkaloid Ascomylactam A (AsA) derived from the marine fungus Microascus sp. SCSIO 41821 were investigated in vivo and in vitro. Antibacterial assays showed that AsA had excellent antibacterial activity and inhibition of biofilm formation against MRSA SC41993, and exhibitted synergistic antibacterial effects with clinical antibiotics. Transcriptomics revealed the potential mechanism that AsA affected the formation of MRSA biofilm, cell wall synthesis and virulence through LytSR, VraSR, ArgAC and KdpDE two-component system (TCS). In addition, by treatment with AsA, it was found that AdhE protein was a potential target for oxidative stress and lipid peroxidation in MRSA, and the resistance of MRSA was reversed by regulating some genes. In vivo experiments showed that AsA combined with gentamicin sulfate (GMS) had a better therapeutic effect than alone against clinical MRSA USA300, especially in the heart. In this study, the antibacterial mechanism of decahydrofluorene-class alkaloids was preliminarily investigated, supporting the potence of AsA as a promising therapeutic agent to combat MASA infections.
Collapse
Affiliation(s)
- Ke-Yue Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei-Hua Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Xu-Meng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Dong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yue-Fan Bai
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China.
| |
Collapse
|
2
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
3
|
Wang Z, Wang H, Bai J, Cai S, Qu D, Xie Y, Wu Y. The Staphylococcus aureus ArlS Kinase Inhibitor Tilmicosin Has Potent Anti-Biofilm Activity in Both Static and Flow Conditions. Microorganisms 2024; 12:256. [PMID: 38399660 PMCID: PMC10891534 DOI: 10.3390/microorganisms12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 μM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 μM or 1.5 μM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.
Collapse
Affiliation(s)
| | | | | | | | | | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| |
Collapse
|
4
|
Kashi ME, Ghorbani M, Badibostan H, Seidel V, Hosseini SH, Asili J, Shakeri A, Sahebkar A. Antimicrobial and Cytotoxic Naphthoquinones from Microbial Origin: An Updated Review. Mini Rev Med Chem 2024; 24:844-862. [PMID: 37694782 DOI: 10.2174/1389557523666230911141331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023]
Abstract
Naphthoquinones (NQs) are small molecules bearing two carbonyl groups. They have been the subject of much research due to their significant biological activities such as antiproliferative, antimicrobial, anti-inflammatory, antioxidant, and antimalarial effects. NQs are produced mainly by bacteria, fungi and higher plants. Among them, microorganisms are a treasure of NQs with diverse skeletons and pharmacological properties. The purpose of the present study is to provide a comprehensive update on the structural diversity and biological activities of 91 microbial naphthoquinones isolated from 2015 to 2022, with a special focus on antimicrobial and cytotoxic activities. During this period, potent cytotoxic NQs such as naphthablin B (46) and hygrocin C (30) against HeLa (IC50=0.23 μg/ml) and MDA-MB-431 (IC50=0.5 μg/ml) cell lines was reported, respectively. In addition, rubromycin CA1 (39), exhibited strong antibacterial activity against Staphylococcus aureus (MIC of 0.2 μg/ml). As importance bioactive compounds, NQs may open new horizon for treatment of cancer and drug resistant bacteria. As such, it is hoped that this review article may stimulates further research into the isolation of further NQs from microbial, and other sources as well as the screening of such compounds for biological activity and beneficial uses.
Collapse
Affiliation(s)
| | - Mahdiyeh Ghorbani
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Badibostan
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Yadav A, Kumari P, Devi P, Adjele JJB, Budhiraja S, Tarai B, Pandey R. Dual RNA-Seq reveals transcriptionally active microbes (TAMs) dynamics in the serum of dengue patients associated with disease severity. Front Microbiol 2023; 14:1307859. [PMID: 38107870 PMCID: PMC10723774 DOI: 10.3389/fmicb.2023.1307859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Dengue virus (DENV) is a flavivirus that has emerged as a global health threat, characterized by either asymptomatic or mild self-limiting febrile illness, but a subset of DENV outbreaks have been associated with severe disease. Studies have looked into the host immune response and dengue viral load during infection. However, it remains unknown how the active microbial isolates modulate the dengue viral infection. In this study, we demonstrate the significance of in-depth analysis of microbiota composition in the serum samples of dengue-infected patients. Materials and methods RNA was extracted from the serum samples collected from 24 dengue positive patients. The human mapped reads generated through RNA-Sequencing (RNA-Seq) were removed, while the unmapped (non-human) reads were employed for microbial taxonomic classification using Kraken2 and Bracken2. Further, we assessed the initial blood parameters analyzing the complete blood count (CBC) profile of the patients. Results Findings revealed differential abundance of commensals and pathogenic microbes in the early febrile period of hospitalized dengue patients, segregated into, High Viral Reads (HVR) and Low Viral Reads (LVR). The Campylobacter genus was abundant in the HVR whereas Lactobacillus dominated the LVR patients. At species level, the microbiota of HVR exhibited higher abundance of unique potential opportunistic microbes, compared to the commensal microbes' enrichment in the LVR patients'. We hypothesize that the DENV might alter the microbiota composition as observed by the increase in preponderance of opportunistic pathogens and an absence of commensals in the HVR. The presence of commensals in the LVR might explain, i) overall lower dengue viral reads compared to the HVR, and ii) shift in lymphocytes (high) and neutrophils (low) counts; resulting in a comparatively milder clinical manifestation in this group. Our findings may help in understanding the co-infection aspect that will be important to develop dengue therapeutics and vaccines. Discussion This study highlights the potential of the unexplored roles of the TAMs in modulating the dengue disease severity using the metatranscriptomic sequencing. This study serves to enhance our understanding of the distinctive microbial and hematologic signatures in the early infection stage that differentiate patients with high viral reads patients from those with low dengue viral reads.
Collapse
Affiliation(s)
- Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pallawi Kumari
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jorelle Jeanne B. Adjele
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Centre for Food, Food Security, and Nutrition Research, Institute of Medical Research and Medicinal Plant Studies, Yaounde, Cameroon
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Singh R, Ali M, Dubey AK. Phenyl Pentyl Ketone and m-isobutyl Methoxy Benzoate Produced by Streptomyces Chrestomyceticus ADP4 are Potent Antimicrobial Agents Displaying Broad Spectrum Activities. Indian J Microbiol 2023; 63:181-189. [PMID: 37325023 PMCID: PMC10267095 DOI: 10.1007/s12088-023-01068-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/19/2023] [Indexed: 03/28/2023] Open
Abstract
Isolation and identification of two antimicrobial compounds, a phenyl pentyl ketone (CP1) and m-isobutyl methoxy benzoate (CP2), from Streptomyces chrestomyceticus ADP4 have been reported. Structure of the compounds were elucidated from analyses of spectral data that included LCMS/MS, NMR, FTIR and UV spectroscopies. Both the compounds displayed significant inhibition of albicans and non-albicans species of Candida (NAC) pathogens including C. auris, which is currently a pathogen of global concern. Also, the compounds showed potent antagonistic activity against Staphylococcus aureus, another significant human pathogen. No in-vitro cytotoxicity against HePG2 cells was observed with either of the compounds. Both displayed favourable drug likeness properties as determined by in-silico ADME and toxicological studies. Also, this is the first report on production of these anti-microbial compounds by an actinobacterium. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01068-7.
Collapse
Affiliation(s)
- Radha Singh
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078 India
| | - Mohd Ali
- Faculty of Pharmacy, Hamdard University, New Delhi, 110062 India
| | - Ashok K. Dubey
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078 India
| |
Collapse
|
7
|
El-Sayed MH, Alshammari FA, Sharaf MH. Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens. J Microbiol Biotechnol 2023; 33:61-74. [PMID: 36597590 PMCID: PMC9896001 DOI: 10.4014/jmb.2211.11026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 μg/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis( 3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 μg/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Science and Arts, Northern Border University, Saudi Arabia,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt,Corresponding author Phone: +20 111 91 070 44 E-mail:
| | - Fahdah A. Alshammari
- Department of Biology, College of Science and Arts, Northern Border University, Saudi Arabia
| | - Mohammed H. Sharaf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
8
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
9
|
Miller T, Waturangi DE, Yogiara. Antibiofilm properties of bioactive compounds from Actinomycetes against foodborne and fish pathogens. Sci Rep 2022; 12:18614. [PMID: 36329158 PMCID: PMC9633603 DOI: 10.1038/s41598-022-23455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, bacteria can form biofilms, multi-layered structures that adhere microbial populations to solid surfaces by exopolysaccharides, proteins, and nucleic acids. In addition to causing foodborne infections, biofilms can be a major problem in aquaculture. Actinomycetes extracts have previously demonstrated antibiofilm activity against multiple foodborne and fish pathogens, and further characterization of these extracts is needed. In this study, we identified the chemical structures and antibiofilm properties of four extracts and determined the genetic similarity of the isolates to known Streptomyces isolates. We found that several extracts contained multiple antibiofilm compounds, and the antibiofilm activities of all extracts were most stable at pH 6. Furthermore, the antibiofilm inhibition and destruction activities of the isolates were stable at different temperatures. All of crude extracts demonstrated activity against biofilms formed by foodborne and fish pathogens on the surface of stainless-steel coupons as well as polystyrene that commonly used in industrial equipment. Using PCR 16S-rRNA gene and DNA sequencing analysis, the four Actinomycetes isolates were found to be 99% (1 AC), 97% (20 PM), 95% (16 PM), and 85% (18 PM) similar to Streptomyces. Biofilm structure were analyzed using Scanning Electron Microscopy coupled with Energy-Dispersive Spectrometry analysis. Coniine/(S)-2-propylpiperidine was the most active fraction of the crude extracts of the 1 AC, 20 PM, and 16 PM isolates, and piperidine, 2-(tetrahydro-2-furanyl) was most active in the 18 PM isolate.
Collapse
Affiliation(s)
- Tracy Miller
- grid.443450.20000 0001 2288 786XBiotechnology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta 12930 Indonesia
| | - Diana Elizabeth Waturangi
- grid.443450.20000 0001 2288 786XBiotechnology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta 12930 Indonesia
| | - Yogiara
- grid.443450.20000 0001 2288 786XBiotechnology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta 12930 Indonesia
| |
Collapse
|
10
|
Microbial Biofilms and Antibiofilm Agents 2.0. Int J Mol Sci 2022; 23:ijms23147932. [PMID: 35887278 PMCID: PMC9321201 DOI: 10.3390/ijms23147932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
It is estimated that <0 [...]
Collapse
|