1
|
Bakare A, Mohanadas HP, Tucker N, Ahmed W, Manikandan A, Faudzi AAM, Mohamaddan S, Jaganathan SK. Advancements in textile techniques for cardiovascular tissue replacement and repair. APL Bioeng 2024; 8:041503. [PMID: 39431050 PMCID: PMC11488978 DOI: 10.1063/5.0231856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
In cardiovascular therapeutics, procedures such as heart transplants and coronary artery bypass graft are pivotal. However, an acute shortage of organ donors increases waiting times of patients, which is reflected in negative effects on the outcome for the patient. Post-procedural complications such as thrombotic events and atherosclerotic developments may also have grave clinical implications. To address these challenges, tissue engineering is emerging as a solution, using textile technologies to synthesize biomimetic scaffolds resembling natural tissues. This comprehensive analysis explains methodologies including electrospinning, electrostatic flocking, and advanced textile techniques developed from weaving, knitting, and braiding. These techniques are evaluated in the context of fabricating cardiac patches, vascular graft constructs, stent designs, and state-of-the-art wearable sensors. We also closely examine the interaction of distinct process parameters with the biomechanical and morphological attributes of the resultant scaffolds. The research concludes by combining current findings and recommendations for subsequent investigation.
Collapse
Affiliation(s)
- Abiola Bakare
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | | | - Nick Tucker
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - Waqar Ahmed
- School of Mathematics and Physics, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - A. Manikandan
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ahmad Athif Mohd Faudzi
- School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shahrol Mohamaddan
- Innovative Global Program College of Engineering, Shibaura Institute of Technology, Saitama, Japan
| | | |
Collapse
|
2
|
Toufanian S, Sharma M, Xu F, Tayebi SS, McCabe C, Piliouras E, Hoare T. Electrospun "Hard-Soft" Interpenetrating Nanofibrous Tissue Scaffolds Facilitating Enhanced Mechanical Strength and Cell Proliferation. ACS Biomater Sci Eng 2024. [PMID: 39367819 DOI: 10.1021/acsbiomaterials.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels. The electrospinning process results in partially aligned but interpenetrating fiber network with minimal internal phase separation, leading to anisotropic but strong mechanical properties even in the hydrated state; apparent ultimate tensile strengths of the swollen scaffolds ranged from 429 ± 39 kPa in the direction of fiber alignment (longitudinal) to 86 ± 25 kPa perpendicular to fiber alignment (cross-longitudinal), typical of PCL-based scaffolds and enabling efficient suture retention in different directions. However, contact angle measurements indicate hydrogel-like interfacial properties due to the presence of the interpenetrating POEGMA network. C2C12 myoblast proliferation in the PCL-POEGMA scaffolds was 50% higher than that observed on PCL-only scaffolds, a result attributed to the presence of the more hydrophilic POEGMA interpenetrating nanofiber network. Overall, this method is demonstrated to represent a facile single-step strategy to fabricate strong macroporous but still interfacially hydrophilic scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Samaneh Toufanian
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Mya Sharma
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Seyed Saeid Tayebi
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Christina McCabe
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Elaina Piliouras
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
3
|
Jiao H, Lu X, Li Y, Zhang H, Fu Y, Zhong C, Wang Q, Ullah MW, Liu H, Yong YC, Liu J. In situ biomineralization reinforcing anisotropic nanocellulose scaffolds for guiding the differentiation of bone marrow-derived mesenchymal stem cells. Int J Biol Macromol 2024; 274:133515. [PMID: 38944070 DOI: 10.1016/j.ijbiomac.2024.133515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanocellulose (NC) is a promising biopolymer for various biomedical applications owing to its biocompatibility and low toxicity. However, it faces challenges in tissue engineering (TE) applications due to the inconsistency of the microenvironment within the NC-based scaffolds with target tissues, including anisotropy microstructure and biomechanics. To address this challenge, a facile swelling-induced nanofiber alignment and a novel in situ biomineralization reinforcement strategies were developed for the preparation of NC-based scaffolds with tunable anisotropic structure and mechanical strength for guiding the differentiation of bone marrow-derived mesenchymal stem cells for potential TE application. The bacterial cellulose (BC) and cellulose nanofibrils (CNFs) based scaffolds with tunable swelling anisotropic index in the range of 10-100 could be prepared by controlling the swelling medium. The in situ biomineralization efficiently reinforced the scaffolds with 2-4 times and 10-20 times modulus increasement for BC and CNFs, respectively. The scaffolds with higher mechanical strength were superior in supporting cell growth and proliferation, suggesting the potential application in TE application. This work demonstrated the feasibility of the proposed strategy in the preparation of scaffolds with mechanical anisotropy to induce cells-directed differentiation for TE applications.
Collapse
Affiliation(s)
- Haixin Jiao
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Qianqian Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Li Y, Tang S, Luo Z, Liu K, Luo Y, Wen W, Ding S, Li L, Liu M, Zhou C, Luo B. Chitin whisker/chitosan liquid crystal hydrogel assisted scaffolds with bone-like ECM microenvironment for bone regeneration. Carbohydr Polym 2024; 332:121927. [PMID: 38431420 DOI: 10.1016/j.carbpol.2024.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.
Collapse
Affiliation(s)
- Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Shengyue Tang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Ziang Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Yiting Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Lihua Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China.
| |
Collapse
|
5
|
Iravani K, Mousavi S, Owji SM, Sani M, Owji SH. Effect of amniotic membrane/collagen scaffolds on laryngeal cartilage repair. Laryngoscope Investig Otolaryngol 2024; 9:e1222. [PMID: 38362193 PMCID: PMC10866587 DOI: 10.1002/lio2.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives Laryngeal cartilage defects are a major problem that greatly impacts structural integrity and function. Cartilage repair is also a challenging issue. This study evaluated the efficacy of a collagen scaffold enveloped by amniotic membrane (AM/C) on laryngeal cartilage repair. Study Design Experimental animal study. Methods Fourteen Dutch rabbits were enrolled in the study. A 5 mm cartilage defect was created in the right and left thyroid lamina. The animals were divided into two groups randomly. Group 1 collagen scaffolds and group 2 AM/C were applied to the right side defects. Left side defects were not repaired, serving as control. Histologic evaluation was done 45 and 90 days following collagen and AM/C application with criteria of tissue and cell morphology, lacuna formation, vascularization, and inflammation. Results Significant improvement in cartilage repair was observed in the AM/C side compared to the control side in all histologic criteria after 45 days (p<.05). After 90 days, cartilage repair improved in cell morphology, lacuna formation, and inflammation significantly (p<.05). Conclusion The combination of amniotic membrane and collagen scaffolds provides a promising treatment modality for improving the repair of laryngeal cartilage defects. Level of Evidence NA.
Collapse
Affiliation(s)
- Kamyar Iravani
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| | - Simin Mousavi
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| | - Seyed Mohammad Owji
- Department of PathologySchool of Medicine, Shiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz University of Medical SciencesShirazIran
| | - Seyed Hossein Owji
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Baghersad S, Sathish Kumar A, Kipper MJ, Popat K, Wang Z. Recent Advances in Tissue-Engineered Cardiac Scaffolds-The Progress and Gap in Mimicking Native Myocardium Mechanical Behaviors. J Funct Biomater 2023; 14:jfb14050269. [PMID: 37233379 DOI: 10.3390/jfb14050269] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Heart failure is the leading cause of death in the US and worldwide. Despite modern therapy, challenges remain to rescue the damaged organ that contains cells with a very low proliferation rate after birth. Developments in tissue engineering and regeneration offer new tools to investigate the pathology of cardiac diseases and develop therapeutic strategies for heart failure patients. Tissue -engineered cardiac scaffolds should be designed to provide structural, biochemical, mechanical, and/or electrical properties similar to native myocardium tissues. This review primarily focuses on the mechanical behaviors of cardiac scaffolds and their significance in cardiac research. Specifically, we summarize the recent development of synthetic (including hydrogel) scaffolds that have achieved various types of mechanical behavior-nonlinear elasticity, anisotropy, and viscoelasticity-all of which are characteristic of the myocardium and heart valves. For each type of mechanical behavior, we review the current fabrication methods to enable the biomimetic mechanical behavior, the advantages and limitations of the existing scaffolds, and how the mechanical environment affects biological responses and/or treatment outcomes for cardiac diseases. Lastly, we discuss the remaining challenges in this field and suggestions for future directions to improve our understanding of mechanical control over cardiac function and inspire better regenerative therapies for myocardial restoration.
Collapse
Affiliation(s)
- Somayeh Baghersad
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Abinaya Sathish Kumar
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Matt J Kipper
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul Popat
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Fuchs B, Birt A, Moellhoff N, Kuhlmann C, Giunta RE, Wiggenhauser PS. Adipose-Derived Stem Cells Improve Angiogenesis and Lymphangiogenesis in a Hypoxic Dermal Regeneration Model In Vitro. Medicina (B Aires) 2023; 59:medicina59040706. [PMID: 37109664 PMCID: PMC10142758 DOI: 10.3390/medicina59040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Background and Objectives: Impaired wound healing represents an unsolved medical issue with a high impact on patients’ quality of life and global health care. Even though hypoxia is a significant limiting factor for wound healing, it reveals stimulating effects in gene and protein expression at cellular levels. In particular, hypoxically treated human adipose tissue-derived stem cells (ASCs) have previously been used to stimulate tissue regeneration. Therefore, we hypothesized that they could promote lymphangiogenesis or angiogenesis. Materials and Methods: Dermal regeneration matrices were seeded with human umbilical vein endothelial cells (HUVECs) or human dermal lymphatic endothelial cells (LECs) that were merged with ASCs. Cultures were maintained for 24 h and 7 days under normoxic or hypoxic conditions. Finally, gene and protein expression were measured regarding subtypes of VEGF, corresponding receptors, and intracellular signaling pathways, especially hypoxia-inducible factor-mediated pathways using multiplex-RT-qPCR and ELISA assays. Results: All cell types reacted to hypoxia with an alteration of gene expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth factor receptor 1 (VEGFR1/FLT1), vascular endothelial growth factor receptor 2 (VEGFR2/KDR), vascular endothelial growth factor receptor 3 (VEGFR3/FLT4), and prospero homeobox 1 (PROX1) were overexpressed significantly depending on upregulation of hypoxia-inducible factor 1 alpha (HIF-1a). Moreover, co-cultures with ASCs showed a more intense change in gene and protein expression profiles and gained enhanced angiogenic and lymphangiogenic potential. In particular, long-term hypoxia led to continuous stimulation of HUVECs by ASCs. Conclusions: Our findings demonstrated the benefit of hypoxic conditioned ASCs in dermal regeneration concerning angiogenesis and lymphangiogenesis. Even a short hypoxic treatment of 24 h led to the stimulation of LECs and HUVECs in an ASC-co-culture. Long-term hypoxia showed a continuous influence on gene expressions. Therefore, this work emphasizes the supporting effects of hypoxia-conditioned-ASC-loaded collagen scaffolds on wound healing in dermal regeneration.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Riccardo E. Giunta
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| |
Collapse
|
9
|
Santos ACA, Camarena DEM, Roncoli Reigado G, Chambergo FS, Nunes VA, Trindade MA, Stuchi Maria-Engler S. Tissue Engineering Challenges for Cultivated Meat to Meet the Real Demand of a Global Market. Int J Mol Sci 2023; 24:6033. [PMID: 37047028 PMCID: PMC10094385 DOI: 10.3390/ijms24076033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Cultivated meat (CM) technology has the potential to disrupt the food industry-indeed, it is already an inevitable reality. This new technology is an alternative to solve the environmental, health and ethical issues associated with the demand for meat products. The global market longs for biotechnological improvements for the CM production chain. CM, also known as cultured, cell-based, lab-grown, in vitro or clean meat, is obtained through cellular agriculture, which is based on applying tissue engineering principles. In practice, it is first necessary to choose the best cell source and type, and then to furnish the necessary nutrients, growth factors and signalling molecules via cultivation media. This procedure occurs in a controlled environment that provides the surfaces necessary for anchor-dependent cells and offers microcarriers and scaffolds that favour the three-dimensional (3D) organisation of multiple cell types. In this review, we discuss relevant information to CM production, including the cultivation process, cell sources, medium requirements, the main obstacles to CM production (consumer acceptance, scalability, safety and reproducibility), the technological aspects of 3D models (biomaterials, microcarriers and scaffolds) and assembly methods (cell layering, spinning and 3D bioprinting). We also provide an outlook on the global CM market. Our review brings a broad overview of the CM field, providing an update for everyone interested in the topic, which is especially important because CM is a multidisciplinary technology.
Collapse
Affiliation(s)
- Andressa Cristina Antunes Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| | - Denisse Esther Mallaupoma Camarena
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| | - Gustavo Roncoli Reigado
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Felipe S. Chambergo
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Viviane Abreu Nunes
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Marco Antonio Trindade
- Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, Pirassununga 13635-900, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| |
Collapse
|
10
|
Hoshi M, Taira M, Sawada T, Hachinohe Y, Hatakeyama W, Takafuji K, Tekemoto S, Kondo H. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8802. [PMID: 36556608 PMCID: PMC9787395 DOI: 10.3390/ma15248802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Bone-substitute materials are essential in dental implantology. We prepared collagen (Col)/hydroxyapatite (Hap)/acidic gelatin (AG)/basic fibroblast growth factor (b-FGF) constructs with enhanced bone-forming capability. The Col/Hap apatite composites were prepared by immersing Col sponges alternately in calcium and phosphate ion solutions five times, for 20 and 60 min, respectively. Then, the sponges were heated to 56 °C for 48 h. Scanning electron microscopy/energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analyses showed that the Col/Hap composites contained poorly crystalline Hap precipitates on the Col matrix. Col/Hap composite granules were infiltrated by AG, freeze-dried, and immersed in b-FGF solution. The wet quaternary constructs were implanted in rat cranial bone defects for 8 weeks, followed by soft X-ray measurements and histological analysis. Animal studies have shown that the constructs moderately increase bone formation in cranial bone defects. We found that an alternate immersion time of 20 min led to the greatest bone formation (p < 0.05). Constructs placed inside defects slightly extend the preexisting bone from the defect edges and lead to the formation of small island-like bones inside the defect, followed by disappearance of the constructs. The combined use of Col, Hap, AG, and b-FGF might bring about novel bone-forming biomaterials.
Collapse
Affiliation(s)
- Miki Hoshi
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Masayuki Taira
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Tomofumi Sawada
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Yuki Hachinohe
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Kyoko Takafuji
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Shinji Tekemoto
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| |
Collapse
|
11
|
In Vitro Biocompatibility and Degradation Analysis of Mass-Produced Collagen Fibers. Polymers (Basel) 2022; 14:polym14102100. [PMID: 35631981 PMCID: PMC9146522 DOI: 10.3390/polym14102100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Automation and mass-production are two of the many limitations in the tissue engineering industry. Textile fabrication methods such as electrospinning are used extensively in this field because of the resemblance of the extracellular matrix to the fiber structure. However, electrospinning has many limitations, including the ability to mass-produce, automate, and reproduce products. For this reason, this study evaluates the potential use of a traditional textile method such as spinning. Apart from mass production, these methods are also easy, efficient, and cost-effective. This study uses bovine-derived collagen fibers to create yarns using the traditional ring spinning method. The collagen yarns are proven to be biocompatible. Enzymatic biodegradability was also confirmed for its potential use in vivo. The results of this study prove the safety and efficacy of the material and the fabrication method. The material encourages higher cell proliferation and migration compared to tissue culture-treated plastic plates. The process is not only simple but is also streamlined and replicable, resulting in standardized products that can be reproduced.
Collapse
|
12
|
Sonatkar J, Kandasubramanian B, Oluwarotimi Ismail S. 4D printing: Pragmatic progression in biofabrication. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|