1
|
Wang J, Hou J, Peng C. Phospholipid transfer protein ameliorates sepsis-induced cardiac dysfunction through NLRP3 inflammasome inhibition. Open Med (Wars) 2024; 19:20240915. [PMID: 38584827 PMCID: PMC10996989 DOI: 10.1515/med-2024-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Cardiomyocyte pyroptosis is a primary contributor to sepsis-induced cardiac dysfunction (SICD). Recombinant phospholipid transfer protein (PLTP) have been demonstrated to possess anti-inflammatory and antiseptic properties. However, the effect of PLTP on SICD remains unknown. In this study, we established the in vivo and in vitro sepsis model with the recombinant PLTP treatment. The survival rates of mice, mouse cardiac function, cell viability, the protein level of proinflammatory cytokine, and lactate dehydrogenase level were evaluated. The cardiomyocyte pyroptotic changes were observed. The distribution of PLTP and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in mouse myocardial tissue and expression of PLTP, apoptosis associated speck like protein containing a CARD (ASC), NLRP3, caspase-1, interleukin (IL)-1β, and Gasdermin D (GSDMD) were detected. PLTP ameliorated the cecal ligation and puncture-induced mouse survival rate decrease and cardiac dysfunction, inhibited the IL-1β, IL-18, and tumor necrosis factor (TNF)-α release, and blocked the NLRP3 inflammasome/GSDMD signaling pathway in septic mice. In vitro, PLTP reversed the lipopolysaccharide-induced cardiomyocyte pyroptosis, expression of IL-1β, IL-6, TNF-α, and activation of the NLRP3 inflammasome/GSDMD signal pathway. Moreover, PLTP could bind to NLRP3 and negatively regulate the activity of the NLRP3 inflammasome/GSDMD signal pathway. This study demonstrated that PLTP can ameliorate SICD by inhibiting inflammatory responses and cardiomyocyte pyroptosis by blocking the activation of the NLRP3 inflammasome/GSDMD signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| | - Jing Hou
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| | - Chaohua Peng
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| |
Collapse
|
2
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
3
|
Li Q, Chen J, Ren Y, Yang Z, Wang M, Zhang W, Cao L, Sun H, Nie S, Sun Z. Protective Effects and Mechanisms of Luteolin against Acute Respiratory Distress Syndrome: Network Pharmacology and In vivo and In vitro Studies. Curr Pharm Des 2024; 30:1404-1418. [PMID: 38616753 DOI: 10.2174/0113816128289341240327072531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) is an acute life-threatening disease, and luteolin has the potential to become a therapeutic agent for ARDS. However, its mechanism of action has not yet been clarified. OBJECTIVE The present study explored the potential effects and mechanisms of luteolin in the treatment of ARDS through network pharmacology analysis and verified them through biological experiments. METHODS The potential targets of luteolin and ARDS were obtained from online databases. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the underlying molecular mechanisms and to identify hub targets. Molecular docking was used to verify the relationship between luteolin and target proteins. Finally, the effects of luteolin on key signaling pathways and biological processes were verified by in vitro and in vivo experiments. RESULTS A total of 146 luteolin- and 496 ARDS-related targets were extracted from public databases. The network pharmacological analysis suggested that luteolin could inhibit ARDS through the following potential therapeutic targets: AKT1, RELA, and NFKBIA. Inflammatory and oxidative stress responses were the main biological processes involved, with the AKT/NF-κB signaling pathway being the key signaling pathway targeted by luteolin for the treatment of ARDS. Molecular docking analysis indicated that luteolin had a good binding affinity to AKT1, RELA, and NFKBIA. The in vitro and in vivo experiments revealed that luteolin could regulate the inflammatory response and oxidative stress in the treatment of ARDS by inhibiting the AKT/NF- κB signaling pathway. CONCLUSION Luteolin could reduce the production of reactive oxygen species and inflammatory factors by inhibiting the AKT/NF-κB signaling pathway, thus reducing apoptosis and attenuating ARDS.
Collapse
Affiliation(s)
- Quan Li
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- Department of Intensive Care Unit, Suqian First Hospital, Suqian 223800, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Juan Chen
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Haijun Sun
- Department of Intensive Care Unit, Suqian First Hospital, Suqian 223800, PR China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
- Department of Emergency Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, PR China
| |
Collapse
|
4
|
Xu H, Sheng S, Luo W, Xu X, Zhang Z. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol 2023; 14:1277161. [PMID: 38035100 PMCID: PMC10682474 DOI: 10.3389/fimmu.2023.1277161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute diffuse inflammatory lung injury characterized by the damage of alveolar epithelial cells and pulmonary capillary endothelial cells. It is mainly manifested by non-cardiogenic pulmonary edema, resulting from intrapulmonary and extrapulmonary risk factors. ARDS is often accompanied by immune system disturbance, both locally in the lungs and systemically. As a common heterogeneous disease in critical care medicine, researchers are often faced with the failure of clinical trials. Latent class analysis had been used to compensate for poor outcomes and found that targeted treatment after subgrouping contribute to ARDS therapy. The subphenotype of ARDS caused by sepsis has garnered attention due to its refractory nature and detrimental consequences. Sepsis stands as the most predominant extrapulmonary cause of ARDS, accounting for approximately 32% of ARDS cases. Studies indicate that sepsis-induced ARDS tends to be more severe than ARDS caused by other factors, leading to poorer prognosis and higher mortality rate. This comprehensive review delves into the immunological mechanisms of sepsis-ARDS, the heterogeneity of ARDS and existing research on targeted treatments, aiming to providing mechanism understanding and exploring ideas for accurate treatment of ARDS or sepsis-ARDS.
Collapse
Affiliation(s)
- Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiying Sheng
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiwei Luo
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| |
Collapse
|
5
|
Zhang X, Wang X, Sun L, Gao G, Li Y. Tofacitinib reduces acute lung injury and improves survival in a rat model of sepsis by inhibiting the JAK-STAT/NF-κB pathway. J Inflamm (Lond) 2023; 20:5. [PMID: 36737780 PMCID: PMC9896809 DOI: 10.1186/s12950-023-00332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury is a major cause of death in sepsis. Tofacitinib (TOFA), a JAK inhibitor, has anti-inflammatory activity in autoimmune diseases, but its role in acute lung injury in sepsis remains unclear. The purpose of this study is to establish a septic rat model by cecal ligation and perforation, and to evaluate the effect of tofacitinib on the survival rate of septic rat model and its role in acute lung injury in septic rats and the possible mechanism of action. In this study, TOFA (1 mg/kg, 3 mg/kg, 10 mg/kg) was used to observe the survival rate of septic rats. It was found that TOFA (10 mg/kg) significantly improved the survival rate of septic rats. We selected TOFA (10 mg/kg) and focused on the protective effect of TOFA on acute lung injury. The results confirmed that TOFA significantly inhibited the expression of TNF-α, IL-1β, IL-6 and IFN-γ inflammatory factors, reduced the W/D weight ratio of septic lung tissue, and significantly improved lung histopathological damage. These results may be related to the inhibitory effect of TOFA on JAK-STAT/NF-κ B signaling pathway. In conclusion, for the first time, we found that TOFA has a protective effect against sepsis-induced acute lung injury, and it may be a promising drug for the treatment of acute lung injury in sepsis.
Collapse
Affiliation(s)
- Xinxin Zhang
- grid.186775.a0000 0000 9490 772XDepartment of Emergency Medicine, Fuyang People’s Hospital of Anhui Medical University, Fuyang, Anhui China
| | - Xingsheng Wang
- grid.410638.80000 0000 8910 6733Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Li Sun
- grid.410638.80000 0000 8910 6733Department of Health Care, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Guangsheng Gao
- grid.410638.80000 0000 8910 6733Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Yun Li
- grid.410638.80000 0000 8910 6733Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| |
Collapse
|
6
|
Zhang Y, Gao Z, Jiang F, Yan H, Yang B, He Q, Luo P, Xu Z, Yang X. JAK-STAT signaling as an ARDS therapeutic target: Status and future trends. Biochem Pharmacol 2023; 208:115382. [PMID: 36528067 DOI: 10.1016/j.bcp.2022.115382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by noncardiogenic pulmonary edema. It has a high mortality rate and lacks effective pharmacotherapy. With the outbreak of COVID-19 worldwide, the mortality of ARDS has increased correspondingly, which makes it urgent to find effective targets and strategies for the treatment of ARDS. Recent clinical trials of Janus kinase (JAK) inhibitors in treating COVID-19-induced ARDS have shown a positive outcome, which makes the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway a potential therapeutic target for treating ARDS. Here, we review the complex cause of ARDS, the molecular JAK/STAT pathway involved in ARDS pathology, and the progress that has been made in strategies targeting JAK/STAT to treat ARDS. Specifically, JAK/STAT signaling directly participates in the progression of ARDS or colludes with other pathways to aggravate ARDS. We summarize JAK and STAT inhibitors with ARDS treatment benefits, including inhibitors in clinical trials and preclinical studies and natural products, and discuss the side effects of the current JAK inhibitors to reveal future trends in the design of JAK inhibitors, which will help to develop effective treatment strategies for ARDS in the future.
Collapse
Affiliation(s)
- Yuanteng Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, Zhejiang, China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Li W, Li D, Chen Y, Abudou H, Wang H, Cai J, Wang Y, Liu Z, Liu Y, Fan H. Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. DISEASE MARKERS 2022; 2022:6362344. [PMID: 35726235 PMCID: PMC9206211 DOI: 10.1155/2022/6362344] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022]
Abstract
Sepsis is a common critical clinical disease with high mortality that can cause approximately 10 million deaths worldwide each year. Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common clinical complication of sepsis, which occurs primarily as diffuse alveolar injury, hypoxemia, and respiratory distress. The mortality rate of ALI/ARDS is as high as 30%-40%, which greatly endangers human health. Due to the unclear pathogenesis of ALI/ARDS, its treatment is still a worldwide problem. At present, clinical treatment mainly relies on lung-protective ventilation, prone position ventilation, and fluid management. However, there is a lack of effective and specific treatment measures. In recent years, domestic and foreign scholars have committed to basic research on ALI/ARDS, trying to further clarify its pathogenesis and find new targets and methods for the treatment of ALI/ARDS. In this review, we summarize the signaling pathways related to alveolar injury and repair in sepsis-induced ALI/ARDS and their latest research progress. They include the NF-κB, JAK2/STAT3, mitogen-activated protein kinase (MAPK), mTOR, and Notch signaling pathways. Understanding the molecular mechanisms of these signaling pathways in sepsis-induced ALI/ARDS may provide new targets and ideas for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Wenli Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Halidan Abudou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haiwang Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yiping Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
8
|
LaChance AH, Goldman N, Kassamali B, Vleugels RA. Immunologic underpinnings and treatment of morphea. Expert Rev Clin Immunol 2022; 18:461-483. [DOI: 10.1080/1744666x.2022.2063841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Avery H. LaChance
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nathaniel Goldman
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- New York Medical College School of Medicine, Valhalla, NY
| | - Bina Kassamali
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|