1
|
López-Martín E, Sueiro-Benavides R, Leiro-Vidal JM, Rodríguez-González JA, Ares-Pena FJ. Redox cell signalling triggered by black carbon and/or radiofrequency electromagnetic fields: Influence on cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176023. [PMID: 39244061 DOI: 10.1016/j.scitotenv.2024.176023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The capacity of environmental pollutants to generate oxidative stress is known to affect the development and progression of chronic diseases. This scientific review identifies previously published experimental studies using preclinical models of exposure to environmental stress agents, such as black carbon and/or RF-EMF, which produce cellular oxidative damage and can lead to different types of cell death. We summarize in vivo and in vitro studies, which are grouped according to the mechanisms and pathways of redox activation triggered by exposure to BC and/or EMF and leading to apoptosis, necrosis, necroptosis, pyroptosis, autophagy, ferroptosis and cuproptosis. The possible mechanisms are considered in relation to the organ, cell type and cellular-subcellular interaction with the oxidative toxicity caused by BC and/or EMF at the molecular level. The actions of these environmental pollutants, which affect everyday life, are considered separately and together in experimental preclinical models. However, for overall interpretation of the data, toxicological studies must first be conducted in humans, to enable possible risks to human health to be established in relation to the progression of chronic diseases. Further actions should take pollution levels into account, focusing on the most vulnerable populations and future generations.
Collapse
Affiliation(s)
- Elena López-Martín
- Department of Morphological Sciences, Santiago de Compostela, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosana Sueiro-Benavides
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M Leiro-Vidal
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan A Rodríguez-González
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Huang P, Qu C, Rao Z, Wu D, Zhao J. Bidirectional regulation mechanism of TRPM2 channel: role in oxidative stress, inflammation and ischemia-reperfusion injury. Front Immunol 2024; 15:1391355. [PMID: 39007141 PMCID: PMC11239348 DOI: 10.3389/fimmu.2024.1391355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that exhibits Ca2+ permeability. The TRPM2 channel is expressed in various tissues and cells and can be activated by multiple factors, including endogenous ligands, Ca2+, reactive oxygen species (ROS) and temperature. This article reviews the multiple roles of the TRPM2 channel in physiological and pathological processes, particularly on oxidative stress, inflammation and ischemia-reperfusion (I/R) injury. In oxidative stress, the excessive influx of Ca2+ caused by the activation of the TRPM2 channel may exacerbate cellular damage. However, under specific conditions, activating the TRPM2 channel can have a protective effect on cells. In inflammation, the activation of the TRPM2 channel may not only promote inflammatory response but also inhibit inflammation by regulating ROS production and bactericidal ability of macrophages and neutrophils. In I/R, the activation of the TRPM2 channel may worsen I/R injury to various organs, including the brain, heart, kidney and liver. However, activating the TRPM2 channel may protect the myocardium from I/R injury by regulating calcium influx and phosphorylating proline-rich tyrosine kinase 2 (Pyk2). A thorough investigation of the bidirectional role and regulatory mechanism of the TRPM2 channel in these physiological and pathological processes will aid in identifying new targets and strategies for treatment of related diseases.
Collapse
Affiliation(s)
- Peng Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Dongzhe Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jiexiu Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
3
|
Jiang HY, Ma RA, Ji FL, Liu Y, Wang B, Fu SQ, Ma LS, Wang S, Liu CX, Guo Z, Li R, Wang YC, Sun W, Dong L, Dong CX, Sun DQ. Structure characterization of polysaccharides from Cistanche deserticola and their neuroprotective effects against oxidative stress in slow transit constipation mice. Int J Biol Macromol 2024; 260:129527. [PMID: 38246435 DOI: 10.1016/j.ijbiomac.2024.129527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Oxidative stress-induced enteric neuropathy is an important factor in slow transit constipation (STC). Cistanche deserticola crude polysaccharides (CDCP) are natural antioxidants with various biological activities. We prepared CDCP through water-extract and alcohol-precipitation methods. The structural characteristics of CDCP were analyzed by infrared spectroscopy and methylation analysis. The results showed that CDCP was primarily composed of (1 → 4)-linked glucans with minor amounts of pectic polysaccharides. Different doses of CDCP (100, 200, and 400 mg/kg) were administered to loperamide-induced STC mice to explore the therapeutic effects of CDCP. Compared with the untreated group, CDCP treatment significantly improved constipation symptoms, relevant gut-regulating peptides levels, colonic pathological damage, and colonic myenteric nerons injury. CDCP enhanced the antioxidant capacity by decreasing Malondialdehyde (MDA) content, increasing Superoxide Dismutase (SOD) activity and Reduced Glutathione (GSH) content. CDCP significantly reduced oxidative stress-induced injury by preserving mitochondrial function in the colonic myenteric plexus. Furthermore, the neuroprotective effects of CDCP might be associated with the Nrf2/Keap1 pathway. Thus, our findings first revealed the potential of CDCP to protect the colonic myenteric plexus against oxidative stress-induced damage in STC, establishing CDCP as promising candidates for natural medicine in the clinical management of STC.
Collapse
Affiliation(s)
- Hong-Yu Jiang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300074, China
| | - Rui-An Ma
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Fu-Long Ji
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bo Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Si-Qi Fu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu-Shun Ma
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chun-Xiang Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Chao Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Liang Dong
- Department of General Surgery, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300074, China.
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Da-Qing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
4
|
Zang C, Liu H, Ning J, Chen Q, Jiang Y, Shang M, Yang Y, Ma J, Dong Y, Wang J, Li F, Bao X, Zhang D. Emerging role and mechanism of HACE1 in the pathogenesis of neurodegenerative diseases: A promising target. Biomed Pharmacother 2024; 172:116204. [PMID: 38364733 DOI: 10.1016/j.biopha.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
HACE1 is a member of the HECT domain-containing E3 ligases with 909 amino acid residues, containing N-terminal ankyrin-repeats (ANK) and C-terminal HECT domain. Previously, it was shown that HACE1 is inactive in human tumors and plays a crucial role in the initiation, progression, and invasion of malignant tumors. Recent studies indicated that HACE1 might be closely involved in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. HACE1 interacts with its substrates, including Ras-related C3 botulinum toxin substrate 1 (Rac1), nuclear factor erythroid 2-related factor 2 (Nrf2), tumor necrosis factor receptor (TNFR), and optineurin (OPTN), through which participates in several pathophysiological processes, such as oxidative stress, autophagy and inflammation. Therefore, in this review, we elaborately describe the essential substrates of HACE1 and illuminate the pathophysiological processes by which HACE1 is involved in neurodegenerative diseases. We provide a new molecular target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Caixia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Qiuzhu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yueqi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yirong Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jinrong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
5
|
Zhao Y, Zhang Y, Sun M, Li B, Li Y, Hua S. Cecropin A Alleviates LPS-Induced Oxidative Stress and Apoptosis of Bovine Endometrial Epithelial Cells. Animals (Basel) 2024; 14:768. [PMID: 38473153 DOI: 10.3390/ani14050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dairy cows receiving a prolonged high-concentrate diet express an elevated concentration of lipopolysaccharides (LPSs) in the peripheral blood circulation, accompanied by a series of systemic inflammatory responses; however, the specific impacts of inflammation are yet to be determined. Cecropin-like antimicrobial peptides have become a research hotspot regarding antimicrobial peptides because of their excellent anti-inflammatory activities, and cecropin A is a major member of the cecropin family. To elucidate the mechanism of cecropin A as anti-inflammatory under the condition of sub-acute ruminal acidosis (SARA) in dairy cows, we induced inflammation in bEECs with LPS (10 µg/mL) and then added cecropin A (25 µM). Afterwards, we detected three categories of indexes including oxidative stress indices, inflammation-related genes, and apoptosis-related genes in bovine endometrial epithelial cells (bEECs). The results indicated that cecropin A has the ability to reduce inflammatory factors TNF-α, IL-1β, and IL-8 and inhibit the MAPK pathway to alleviate inflammation. In addition, cecropin A is able to reduce reactive oxygen species (ROS) levels and alleviates LPS-induced oxidative stress and mitochondrial dysfunction by downregulating NADPH Oxidase (NOX), and upregulating catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Furthermore, cecropin A demonstrates the ability to inhibit apoptosis by suppressing the mitochondrial-dependent apoptotic pathway, specifically Fas/FasL-caspase-8/-3. The observed increase in the Bcl-2/Bax ratio, a known apoptosis regulator, further supports this finding. In conclusion, our study presents novel solutions for addressing inflammatory responses associated with SARA.
Collapse
Affiliation(s)
- Yu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 621000, China
| | - Mingkun Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Bowen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yuqiong Li
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750000, China
| | - Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Bertuccio MP, Acri G, Ientile R, Caccamo D, Currò M. The Exposure to 2.45 GHz Electromagnetic Radiation Induced Different Cell Responses in Neuron-like Cells and Peripheral Blood Mononuclear Cells. Biomedicines 2023; 11:3129. [PMID: 38137349 PMCID: PMC10740707 DOI: 10.3390/biomedicines11123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Electromagnetic radiation emitted by commonly used devices became an issue for public health because of their harmful effects. Notably, 2.45 GHz electromagnetic radiation exposure has been associated with DNA damage and alterations in the central nervous system. We here investigated the effects of 2.45 GHz electromagnetic radiation on cell redox status by using human SH-SY5Y neuroblastoma cells, which were differentiated to neuronal-like cells, and peripheral blood mononuclear cells (PBMCs), which were exposed to an antenna emitting 2.45 GHz electromagnetic radiation for 2, 24, and 48 h. We evaluated cell viability and mitochondrial activity alterations by measuring reactive oxygen species (ROS), mitochondrial transmembrane potential (ΔΨm), NAD+/NADH ratio, mitochondrial transcription factor A (mtTFA), and superoxide dismutase 1 (SOD1) gene transcript levels. We also investigated apoptosis and autophagy, evaluating B-cell lymphoma 2 (BCL2), BCL2-associated X protein (BAX), and microtubule-associated protein 1A/1B-light chain 3 (LC3) gene transcript levels. Cell viability was significantly reduced after 24-48 h of exposure to radiation. ROS levels significantly increased in radiation-exposed cells, compared with controls at all exposure times. ΔΨm values decreased after 2 and 24 h in exposed SH-SY5Y cells, while in PBMCs, values decreased soon after 2 h of exposure. Alterations were also found in the NAD+/NADH ratio, mtTFA, SOD1, LC3 gene expression, and BAX/BCL2 ratio. Our results showed that neuron-like cells are more prone to developing oxidative stress than PBMCs after 2.45 GHz electromagnetic radiation exposure, activating an early antioxidant defense response.
Collapse
Affiliation(s)
- Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (G.A.); (R.I.); (D.C.); (M.C.)
| | | | | | | | | |
Collapse
|
7
|
Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 2023; 21:519. [PMID: 37533007 PMCID: PMC10394930 DOI: 10.1186/s12967-023-04361-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care, Changsha, People's Republic of China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
8
|
Kostyn K, Boba A, Kozak B, Sztafrowski D, Widuła J, Szopa J, Preisner M. Transcriptome profiling of flax plants exposed to a low-frequency alternating electromagnetic field. Front Genet 2023; 14:1205469. [PMID: 37351344 PMCID: PMC10282948 DOI: 10.3389/fgene.2023.1205469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
All living organisms on Earth evolved in the presence of an electromagnetic field (EMF), adapted to the environment of EMF, and even learned to utilize it for their purposes. However, during the last century, the Earth's core lost its exclusivity, and many EMF sources appeared due to the development of electricity and electronics. Previous research suggested that the EMF led to changes in intercellular free radical homeostasis and further altered the expression of genes involved in plant response to environmental stresses, inorganic ion transport, and cell wall constituent biosynthesis. Later, CTCT sequence motifs in gene promoters were proposed to be responsible for the response to EMF. How these motifs or different mechanisms are involved in the plant reaction to external EMF remains unknown. Moreover, as many genes activated under EMF treatment do not have the CTCT repeats in their promoters, we aimed to determine the transcription profile of a plant exposed to an EMF and identify the genes that are directly involved in response to the treatment to find the common denominator of the observed changes in the plant transcriptome.
Collapse
Affiliation(s)
- Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Aleksandra Boba
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Dariusz Sztafrowski
- Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Jan Widuła
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jan Szopa
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Marta Preisner
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
9
|
Ma T, Ding Q, Liu C, Wu H. Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis. Stem Cell Res Ther 2023; 14:133. [PMID: 37194107 DOI: 10.1186/s13287-023-03303-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Electromagnetic fields (EMF) are increasing in popularity as a safe and non-invasive therapy. On the one hand, it is widely acknowledged that EMF can regulate the proliferation and differentiation of stem cells, promoting the undifferentiated cells capable of osteogenesis, angiogenesis, and chondroblast differentiation to achieve bone repair purpose. On the other hand, EMF can inhibit tumor stem cells proliferation and promote apoptosis to suppress tumor growth. As an essential second messenger, intracellular calcium plays a role in regulating cell cycle, such as proliferation, differentiation and apoptosis. There is increasing evidence that the modulation of intracellular calcium ion by EMF leads to differential outcomes in different stem cells. This review summarizes the regulation of channels, transporters, and ion pumps by EMF-induced calcium oscillations. It furtherly discusses the role of molecules and pathways activated by EMF-dependent calcium oscillations in promoting bone and cartilage repair and inhibiting tumor stem cells growth.
Collapse
Affiliation(s)
- Tian Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qing Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chaoxu Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hua Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Li H, Ren J, Li Y, Wu Q, Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne) 2023; 14:1134025. [PMID: 37077347 PMCID: PMC10107409 DOI: 10.3389/fendo.2023.1134025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity has been associated with oxidative stress. Obese patients are at increased risk for diabetic cognitive dysfunction, indicating a pathological link between obesity, oxidative stress, and diabetic cognitive dysfunction. Obesity can induce the biological process of oxidative stress by disrupting the adipose microenvironment (adipocytes, macrophages), mediating low-grade chronic inflammation, and mitochondrial dysfunction (mitochondrial division, fusion). Furthermore, oxidative stress can be implicated in insulin resistance, inflammation in neural tissues, and lipid metabolism disorders, affecting cognitive dysfunction in diabetics.
Collapse
Affiliation(s)
- Huimin Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yusi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Abed T, Ganser K, Eckert F, Stransky N, Huber SM. Ion channels as molecular targets of glioblastoma electrotherapy. Front Cell Neurosci 2023; 17:1133984. [PMID: 37006466 PMCID: PMC10064067 DOI: 10.3389/fncel.2023.1133984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Therapies with weak, non-ionizing electromagnetic fields comprise FDA-approved treatments such as Tumor Treating Fields (TTFields) that are used for adjuvant therapy of glioblastoma. In vitro data and animal models suggest a variety of biological TTFields effects. In particular, effects ranging from direct tumoricidal, radio- or chemotherapy-sensitizing, metastatic spread-inhibiting, up to immunostimulation have been described. Diverse underlying molecular mechanisms, such as dielectrophoresis of cellular compounds during cytokinesis, disturbing the formation of the spindle apparatus during mitosis, and perforating the plasma membrane have been proposed. Little attention, however, has been paid to molecular structures that are predestinated to percept electromagnetic fields-the voltage sensors of voltage-gated ion channels. The present review article briefly summarizes the mode of action of voltage sensing by ion channels. Moreover, it introduces into the perception of ultra-weak electric fields by specific organs of fishes with voltage-gated ion channels as key functional units therein. Finally, this article provides an overview of the published data on modulation of ion channel function by diverse external electromagnetic field protocols. Combined, these data strongly point to a function of voltage-gated ion channels as transducers between electricity and biology and, hence, to voltage-gated ion channels as primary targets of electrotherapy.
Collapse
Affiliation(s)
- Tayeb Abed
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | - Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Physical Differences between Man-Made and Cosmic Microwave Electromagnetic Radiation and Their Exposure Limits, and Radiofrequencies as Generators of Biotoxic Free Radicals. RADIATION 2022. [DOI: 10.3390/radiation2040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical arguments for radiofrequency radiation exposure limits are currently based on the principle that radio frequencies (RF) and electromagnetic fields (EMFs) are non-ionising, and their exposure limits are even 100-fold lower than those emitted from the Sun in the whole RF-EMF spectrum. Nonetheless, this argument has been challenged by numerous experimental and theoretical studies on the diverse biological effects of RF-EMF at much lower power density (W/m2) levels than today’s exposing limits. On the other hand, less attention has been given to counterarguments based on the differences in the physics concepts underlying man-made versus natural electromagnetic radiation (EMR) and on the fact that man’s biology has been adapted to the natural EMR levels reaching Earth’s surface at single EMF wavelengths, which are the natural limits of man’s exposure to EMFs. The article highlights the main points of interaction of natural and man-made radiation with biomatter and reveals the physical theoretical background that explains the effects of man-made microwave radiation on biological matter. Moreover, the article extends its analysis on experimental quantum effects, establishing the “ionising-like” effects of man-made microwave radiation on biological matter.
Collapse
|
13
|
Chuang CW, Chang KP, Cho HY, Chuang TH, Yu MC, Wu CL, Wu SN. Characterization of Inhibitory Capability on Hyperpolarization-Activated Cation Current Caused by Lutein (β,ε-Carotene-3,3'-Diol), a Dietary Xanthophyll Carotenoid. Int J Mol Sci 2022; 23:7186. [PMID: 35806190 PMCID: PMC9266545 DOI: 10.3390/ijms23137186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lutein (β,ε-carotene-3,3'-diol), a xanthophyll carotenoid, is found in high concentrations in the macula of the human retina. It has been recognized to exert potential effectiveness in antioxidative and anti-inflammatory properties. However, whether and how its modifications on varying types of plasmalemmal ionic currents occur in electrically excitable cells remain incompletely answered. The current hypothesis is that lutein produces any direct adjustments on ionic currents (e.g., hyperpolarization-activated cation current, Ih [or funny current, If]). In the present study, GH3-cell exposure to lutein resulted in a time-, state- and concentration-dependent reduction in Ih amplitude with an IC50 value of 4.1 μM. There was a hyperpolarizing shift along the voltage axis in the steady-state activation curve of Ih in the presence of this compound, despite being void of changes in the gating charge of the curve. Under continued exposure to lutein (3 μM), further addition of oxaliplatin (10 μM) or ivabradine (3 μM) could be effective at either reversing or further decreasing lutein-induced suppression of hyperpolarization-evoked Ih, respectively. The voltage-dependent anti-clockwise hysteresis of Ih responding to long-lasting inverted isosceles-triangular ramp concentration-dependently became diminished by adding this compound. However, the addition of 10 μM lutein caused a mild but significant suppression in the amplitude of erg-mediated or A-type K+ currents. Under current-clamp potential recordings, the sag potential evoked by long-lasting hyperpolarizing current stimulus was reduced under cell exposure to lutein. Altogether, findings from the current observations enabled us to reflect that during cell exposure to lutein used at pharmacologically achievable concentrations, lutein-perturbed inhibition of Ih would be an ionic mechanism underlying its changes in membrane excitability.
Collapse
Affiliation(s)
- Chao-Wei Chuang
- Department of Ophthalmology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan; (C.-W.C.); (K.-P.C.)
| | - Kuo-Pin Chang
- Department of Ophthalmology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan; (C.-W.C.); (K.-P.C.)
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.); (M.-C.Y.)
| | - Tzu-Hsien Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.); (M.-C.Y.)
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.); (M.-C.Y.)
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.); (M.-C.Y.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|