1
|
Di Girolamo N. Biologicals and Biomaterials for Corneal Regeneration and Vision Restoration in Limbal Stem Cell Deficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401763. [PMID: 38777343 DOI: 10.1002/adma.202401763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The mammalian cornea is decorated with stem cells bestowed with the life-long task of renewing the epithelium, provided they remain healthy, functional, and in sufficient numbers. If not, a debilitating disease known as limbal stem cell deficiency (LSCD) can develop causing blindness. Decades after the first stem cell (SC) therapy is devised to treat this condition, patients continue to suffer unacceptable failures. During this time, improvements to therapeutics have included identifying better markers to isolate robust SC populations and nurturing them on crudely modified biological or biomaterial scaffolds including human amniotic membrane, fibrin, and contact lenses, prior to their delivery. Researchers are now gathering information about the biomolecular and biomechanical properties of the corneal SC niche to decipher what biological and/or synthetic materials can be incorporated into these carriers. Advances in biomedical engineering including electrospinning and 3D bioprinting with surface functionalization and micropatterning, and self-assembly models, have generated a wealth of biocompatible, biodegradable, integrating scaffolds to choose from, some of which are being tested for their SC delivery capacity in the hope of improving clinical outcomes for patients with LSCD.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Bonnet C, Gonzalez S, Deng SX. Limbal stem cell therapy. Curr Opin Ophthalmol 2024; 35:309-314. [PMID: 38813737 DOI: 10.1097/icu.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW To highlight the progress and future direction of limbal stem cell (LSC) therapies for the treatment of limbal stem cell deficiency (LSCD). RECENT FINDINGS Direct LSC transplantation have demonstrated good long-term outcomes. Cultivated limbal epithelial transplantation (CLET) has been an alternative to treat severe to total LSCD aiming to improve the safety and efficacy of the LSC transplant. A prospective early-stage uncontrolled clinical trial shows the feasibility and safety of CLET manufactured under xenobiotic free conditions. Other cell sources for repopulating of the corneal epithelium such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells are being investigated. The first clinical trials of using MSCs showed short-term results, but long-term efficacy seems to be disappointing. A better understanding of the niche function and regulation of LSC survival and proliferation will lead to the development of medical therapies to rejuvenate the residual LSCs found in a majority of eyes with LSCD in vivo. Prior efforts have been largely focused on improving LSC transplantation. Additional effort should be placed on improving the accuracy of diagnosis and staging of LSCD, and implementing standardized outcome measures which enable comparison of efficacy of different LSCD treatments for different severity of LSCD. The choice of LSCD treatment will be customized based on the severity of LSCD in the future. SUMMARY New approaches for managing different stages of LSCD are being developed. This concise review summarizes the progresses in LSC therapies for LSCD, underlying mechanisms, limitations, and future areas of development.
Collapse
Affiliation(s)
- Clemence Bonnet
- Stein Eye Institute, University of California, Los Angeles, California, USA
- Centre de Recherche des Cordeliers, INSERM 1138, Paris Cité Université, AP-HP, Paris, France
| | - Sheyla Gonzalez
- Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Trousil J, Cabral JV, Voukali E, Nováčková J, Pop-Georgievski O, Vacík T, Studený P, Studenovska H, Jirsova K. Electrospun poly(l-lactide- co-dl-lactide) nanofibrous scaffold as substrate for ex vivo limbal epithelial cell cultivation. Heliyon 2024; 10:e30970. [PMID: 38803982 PMCID: PMC11128869 DOI: 10.1016/j.heliyon.2024.e30970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Ultrathin electrospun poly (l-lactide-co-dl-lactide) nanofibrous membranes coated with fibronectin were explored as scaffolds for the ex vivo cultivation of limbal epithelial cells (LECs) for the treatment of limbal stem cell deficiency. The developed scaffolds were compared with the "gold-standard" fibrin gel. The resulting membranes composed of nanofibers possessed a very low thickness of 4 μm and allowed very good optical transparency in the wet state. The fibronectin-coated nanofibrous scaffolds demonstrated LEC expansion and successful cultivation similar to that on fibrin gel. Unlike the regular cobblestone epithelial cell morphology on the fibrin gel, the nanofibrous scaffold presented a mostly irregular epithelial morphology with a shift to a mesenchymal phenotype, as confirmed by the upregulation of profibroblastic genes: ACTA2 (p = 0.023), FBLN1 (p < 0.001), and THY1 (p < 0.001). Both culture conditions revealed comparable expression of stem cell markers, including KLF4, ΔNp63α and ABCG2, emphasizing the promise of polylactide-based nanofibrous membranes for further investigations.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Joao Victor Cabral
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Eleni Voukali
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jitka Nováčková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Studený
- Ophthalmology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Jirsova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Bonato P, Bagno A. Replace or Regenerate? Diverse Approaches to Biomaterials for Treating Corneal Lesions. Biomimetics (Basel) 2024; 9:202. [PMID: 38667213 PMCID: PMC11047895 DOI: 10.3390/biomimetics9040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The inner structures of the eye are protected by the cornea, which is a transparent membrane exposed to the external environment and subjected to the risk of lesions and diseases, sometimes resulting in impaired vision and blindness. Several eye pathologies can be treated with a keratoplasty, a surgical procedure aimed at replacing the cornea with tissues from human donors. Even though the success rate is high (up to 90% for the first graft in low-risk patients at 5-year follow-up), this approach is limited by the insufficient number of donors and several clinically relevant drawbacks. Alternatively, keratoprosthesis can be applied in an attempt to restore minimal functions of the cornea: For this reason, it is used only for high-risk patients. Recently, many biomaterials of both natural and synthetic origin have been developed as corneal substitutes to restore and replace diseased or injured corneas in low-risk patients. After illustrating the traditional clinical approaches, the present paper aims to review the most innovative solutions that have been recently proposed to regenerate the cornea, avoiding the use of donor tissues. Finally, innovative approaches to biological tissue 3D printing and xenotransplantation will be mentioned.
Collapse
Affiliation(s)
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy
| |
Collapse
|
5
|
Yam GHF, Pi S, Du Y, Mehta JS. Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications. Prog Retin Eye Res 2023; 96:101192. [PMID: 37392960 DOI: 10.1016/j.preteyeres.2023.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The limbus is a transition from the cornea to conjunctiva and sclera. In human eyes, this thin strip has a rich variation of tissue structures and composition, typifying a change from scleral irregularity and opacity to corneal regularity and transparency; a variation from richly vascularized conjunctiva and sclera to avascular cornea; the neural passage and drainage of aqueous humor. The limbal stroma is enriched with circular fibres running parallel to the corneal circumference, giving its unique role in absorbing small pressure changes to maintain corneal curvature and refractivity. It contains specific niches housing different types of stem cells for the corneal epithelium, stromal keratocytes, corneal endothelium, and trabecular meshwork. This truly reflects the important roles of the limbus in ocular physiology, and the limbal functionality is crucial for corneal health and the entire visual system. Since the anterior limbus containing epithelial structures and limbal epithelial stem cells has been extensively reviewed, this article is focused on the posterior limbus. We have discussed the structural organization and cellular components of the region beneath the limbal epithelium, the characteristics of stem cell types: namely corneal stromal stem cells, endothelial progenitors and trabecular meshwork stem cells, and recent advances leading to the emergence of potential cell therapy options to replenish their respective mature cell types and to correct defects causing corneal abnormalities. We have reviewed different clinical disorders associated with defects of the posterior limbus and summarized the available preclinical and clinical evidence about the developing topic of cell-based therapy for corneal disorders.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore.
| |
Collapse
|
6
|
Wang M, Li Y, Wang H, Li M, Wang X, Liu R, Zhang D, Xu W. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Biomed Pharmacother 2023; 165:115206. [PMID: 37494785 DOI: 10.1016/j.biopha.2023.115206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Corneal epithelial defects and excessive wound healing might lead to severe complications. As stem cells can self-renew infinitely, they are a promising solution for regenerating the corneal epithelium and treating severe corneal epithelial injury. The chemical and biophysical properties of biological scaffolds, such as the amniotic membrane, fibrin, and hydrogels, can provide the necessary signals for stem cell proliferation and differentiation. Multiple researchers have conducted investigations on these scaffolds and evaluated them as potential therapeutic interventions for corneal disorders. These studies have identified various inherent benefits and drawbacks associated with these scaffolds. In this study, we provided a comprehensive overview of the history and use of various stem cells in corneal repair. We mainly discussed biological scaffolds that are used in stem cell transplantation and innovative materials that are under investigation.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Ying Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Hongqiao Wang
- Blood Purification Department, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, Shandong 266071, PR China
| | - Meng Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Rongzhen Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Daijun Zhang
- Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
7
|
Polisetti N, Martin G, Cristina Schmitz HR, Schlötzer-Schrehardt U, Schlunck G, Reinhard T. Characterization of Porcine Ocular Surface Epithelial Microenvironment. Int J Mol Sci 2023; 24:ijms24087543. [PMID: 37108705 PMCID: PMC10145510 DOI: 10.3390/ijms24087543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine ocular surface is used as a model of the human ocular surface; however, a detailed characterization of the porcine ocular surface has not been documented. This is due, in part, to the scarcity of antibodies produced specifically against the porcine ocular surface cell types or structures. We performed a histological and immunohistochemical investigation on frozen and formalin-fixed, paraffin-embedded ocular surface tissue from domestic pigs using a panel of 41 different antibodies related to epithelial progenitor/differentiation phenotypes, extracellular matrix and associated molecules, and various niche cell types. Our observations suggested that the Bowman's layer is not evident in the cornea; the deep invaginations of the limbal epithelium in the limbal zone are analogous to the limbal interpalisade crypts of human limbal tissue; and the presence of goblet cells in the bulbar conjunctiva. Immunohistochemistry analysis revealed that the epithelial progenitor markers cytokeratin (CK)15, CK14, p63α, and P-cadherin were expressed in both the limbal and conjunctival basal epithelium, whereas the basal cells of the limbal and conjunctival epithelium did not stain for CK3, CK12, E-cadherin, and CK13. Antibodies detecting marker proteins related to the extracellular matrix (collagen IV, Tenascin-C), cell-matrix adhesion (β-dystroglycan, integrin α3 and α6), mesenchymal cells (vimentin, CD90, CD44), neurons (neurofilament), immune cells (HLA-ABC; HLA-DR, CD1, CD4, CD14), vasculature (von Willebrand factor), and melanocytes (SRY-homeobox-10, human melanoma black-45, Tyrosinase) on the normal human ocular surface demonstrated similar immunoreactivity on the normal porcine ocular surface. Only a few antibodies (directed against N-cadherin, fibronectin, agrin, laminin α3 and α5, melan-A) appeared unreactive on porcine tissues. Our findings characterize the main immunohistochemical properties of the porcine ocular surface and provide a morphological and immunohistochemical basis useful to research using porcine models. Furthermore, the analyzed porcine ocular structures are similar to those of humans, confirming the potential usefulness of pig eyes to study ocular surface physiology and pathophysiology.
Collapse
Affiliation(s)
- Naresh Polisetti
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Heidi R Cristina Schmitz
- CEMT-Freiburg, Experimental Surgery, Hospital-Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
8
|
Ra’oh NA, Man RC, Fauzi MB, Ghafar NA, Buyong MR, Hwei NM, Halim WHWA. Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction. Polymers (Basel) 2023; 15:polym15071766. [PMID: 37050380 PMCID: PMC10097332 DOI: 10.3390/polym15071766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Over the last several decades, numerous modifications and advancements have been made to design the optimal corneal biomatrix for corneal epithelial cell (CECs) or limbal epithelial stem cell (LESC) carriers. However, researchers have yet to discover the ideal optimization strategies for corneal biomatrix design and its effects on cultured CECs or LESCs. This review discusses and summarizes recent optimization strategies for developing an ideal collagen biomatrix and its interactions with CECs and LESCs. Using PRISMA guidelines, articles published from June 2012 to June 2022 were systematically searched using Web of Science (WoS), Scopus, PubMed, Wiley, and EBSCOhost databases. The literature search identified 444 potential relevant published articles, with 29 relevant articles selected based on inclusion and exclusion criteria following screening and appraising processes. Physicochemical and biocompatibility (in vitro and in vivo) characterization methods are highlighted, which are inconsistent throughout various studies. Despite the variability in the methodology approach, it is postulated that the modification of the collagen biomatrix improves its mechanical and biocompatibility properties toward CECs and LESCs. All findings are discussed in this review, which provides a general view of recent trends in this field.
Collapse
Affiliation(s)
- Nur Amalia Ra’oh
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Rohaina Che Man
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Wan Haslina Wan Abdul Halim
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
PAX6 Expression Patterns in the Adult Human Limbal Stem Cell Niche. Cells 2023; 12:cells12030400. [PMID: 36766742 PMCID: PMC9913671 DOI: 10.3390/cells12030400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Paired box 6 (PAX6), a nuclear transcription factor, determines the fate of limbal epithelial progenitor cells (LEPC) and maintains epithelial cell identity. However, the expression of PAX6 in limbal niche cells, primarily mesenchymal stromal cells (LMSC), and melanocytes is scarce and not entirely clear. To distinctly assess the PAX6 expression in limbal niche cells, fresh and organ-cultured human corneoscleral tissues were stained immunohistochemically. Furthermore, the expression of PAX6 in cultured limbal cells was investigated. Immunostaining revealed the presence of PAX6-negative cells which were positive for vimentin and the melanocyte markers Melan-A and human melanoma black-45 in the basal layer of the limbal epithelium. PAX6 staining was not observed in the limbal stroma. Moreover, the expression of PAX6 was observed by Western blot in cultured LEPC but not in cultured LMSC or LM. These data indicate a restriction of PAX6 expression to limbal epithelial cells at the limbal stem cell niche. These observations warrant further studies for the presence of other PAX isoforms in the limbal stem cell niche.
Collapse
|
10
|
Lee V, Rompolas P. Corneal regeneration: insights in epithelial stem cell heterogeneity and dynamics. Curr Opin Genet Dev 2022; 77:101981. [PMID: 36084496 PMCID: PMC9938714 DOI: 10.1016/j.gde.2022.101981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023]
Abstract
The discovery of slow-cycling cells at the corneal periphery three decades ago established the limbus as the putative corneal stem cell niche. Since then, studies have underscored the importance of the limbal stem cells in maintaining the health and function of the ocular surface. Advancements in our understanding of stem cell biology have been successfully translated into stem cell therapies for corneal diseases. Here, we review recent developments in mouse genetics, intravital imaging, and single-cell genomics that have revealed an underappreciated complexity of the limbal stem cells, from their molecular identity, function, and interactions with their niche environment. Continued efforts to elucidate stem cell dynamics of this extraordinary tissue are critical for not only understanding stem cell biology but also for advancing therapeutic innovation and development.
Collapse
Affiliation(s)
- Vivian Lee
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Panteleimon Rompolas
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Transcriptomic Landscape and Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Limbal Epithelial Progenitor Cells. Cells 2022; 11:cells11233752. [PMID: 36497012 PMCID: PMC9737332 DOI: 10.3390/cells11233752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) is a complex, multifactorial disease affecting limbal epithelial progenitor cells (LEPC), which are essential for maintaining corneal stability and transparency. Human induced pluripotent stem cell-derived (hiPSC-) LEPC are a promising cell source for the treatment of LSCD. However, their similarity to native tissue-derived (T-) LEPC and their functional characterization has not been studied in detail. Here, we show that hiPSC-LEPC and T-LEPC have rather similar gene expression patterns, colony-forming ability, wound-healing capacity, and melanosome uptake. In addition, hiPSC-LEPC exhibited lower immunogenicity and reduced the proliferation of peripheral blood mononuclear cells compared with T-LEPC. Similarly, the hiPSC-LEPC secretome reduced the proliferation of vascular endothelial cells more than the T-LEPC secretome. Moreover, hiPSC-LEPC successfully repopulated decellularized human corneolimbal (DHC/L) scaffolds with multilayered epithelium, while basal deposition of fibrillary material was observed. These findings suggest that hiPSC-LEPC exhibited functional properties close to native LEPC and that hiPSC-LEPC-DHC/L scaffolds might be feasible for transplantation in patients suffering from LSCD in the future. Although hiPSC-LEPC-based stem cell therapy is promising, the current study also revealed new challenges, such as abnormal extracellular matrix deposition, that need to be overcome before hiPSC-LEPC-based stem cell therapies are viable.
Collapse
|
12
|
P-Cadherin Is Expressed by Epithelial Progenitor Cells and Melanocytes in the Human Corneal Limbus. Cells 2022; 11:cells11121975. [PMID: 35741104 PMCID: PMC9221557 DOI: 10.3390/cells11121975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Interactions between limbal epithelial progenitor cells (LEPC) and surrounding niche cells, which include limbal mesenchymal stromal cells (LMSC) and melanocytes (LM), are essential for the maintenance of the limbal stem cell niche required for a transparent corneal surface. P-cadherin (P-cad) is a critical stem cell niche adhesion molecule at various epithelial stem cell niches; however, conflicting observations were reported on the presence of P-cad in the limbal region. To explore this issue, we assessed the location and phenotype of P-cad+ cells by confocal microscopy of human corneoscleral tissue. In subsequent fluorescence-activated cell sorting (FACS) experiments, we used antibodies against P-cad along with CD90 and CD117 for the enrichment of LEPC, LMSC and LM, respectively. The sorted cells were characterized by immunophenotyping and the repopulation of decellularized limbal scaffolds was evaluated. Our findings demonstrate that P-cad is expressed by epithelial progenitor cells as well as melanocytes in the human limbal epithelial stem cell niche. The modified flow sorting addressing P-cad as well as CD90 and CD117 yielded enriched LEPC (CD90−CD117−P-cad+) and pure populations of LMSC (CD90+CD117−P-cad−) and LM (CD90−CD117+P-cad+). The enriched LEPC showed the expression of epithelial progenitor markers and better colony-forming ability than their P-cad− counterparts. The cultured LEPC and LM exhibited P-cad expression at intercellular junctions and successfully repopulated decellularized limbal scaffolds. These data suggest that P-cad is a critical cell–cell adhesion molecule, connecting LEPC and LM, which may play an important role in the long-term maintenance of LEPC at the limbal stem cell niche; moreover, these findings led to further improvement of cell enrichment protocols to enhance the yield of LEPC.
Collapse
|