1
|
Gruenke P, Mayer MD, Aneja R, Schulze WJ, Song Z, Burke DH, Heng X, Lange MJ. A Branched SELEX Approach Identifies RNA Aptamers That Bind Distinct HIV-1 Capsid Structural Components. ACS Infect Dis 2024; 10:2637-2655. [PMID: 39016538 PMCID: PMC11320578 DOI: 10.1021/acsinfecdis.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct structural forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, functional contributions of individual CA structures remain unclear, as evaluation of CA presents several technical challenges. To address this knowledge gap, we identified CA-targeting aptamers with different structural specificities, which emerged through a branched SELEX approach using an aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for the CA lattice or bound both the CA lattice and CA hexamer. We then evaluated four representatives to reveal aptamer regions required for binding, highlighting interesting structural features and challenges in aptamer structure determination. Further, we demonstrate binding to biologically relevant CA structural forms and aptamer-mediated affinity purification of CA from cell lysates without virus or host modification, supporting the development of structural form-specific aptamers as exciting new tools for the study of CA.
Collapse
Affiliation(s)
- Paige
R. Gruenke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Miles D. Mayer
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Rachna Aneja
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - William J. Schulze
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - Zhenwei Song
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald H. Burke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Margaret J. Lange
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Lan H, Shu W, Jiang D, Yu L, Xu G. Cas-based bacterial detection: recent advances and perspectives. Analyst 2024; 149:1398-1415. [PMID: 38357966 DOI: 10.1039/d3an02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Persistent bacterial infections pose a formidable threat to global health, contributing to widespread challenges in areas such as food safety, medical hygiene, and animal husbandry. Addressing this peril demands the urgent implementation of swift and highly sensitive detection methodologies suitable for point-of-care testing and large-scale screening. These methodologies play a pivotal role in the identification of pathogenic bacteria, discerning drug-resistant strains, and managing and treating diseases. Fortunately, new technology, the CRISPR/Cas system, has emerged. The clustered regularly interspaced short joint repeats (CRISPR) system, which is part of bacterial adaptive immunity, has already played a huge role in the field of gene editing. It has been employed as a diagnostic tool for virus detection, featuring high sensitivity, specificity, and single-nucleotide resolution. When applied to bacterial detection, it also surpasses expectations. In this review, we summarise recent advances in the detection of bacteria such as Mycobacterium tuberculosis (MTB), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), Salmonella and Acinetobacter baumannii (A. baumannii) using the CRISPR/Cas system. We emphasize the significance and benefits of this methodology, showcasing the capability of diverse effector proteins to swiftly and precisely recognize bacterial pathogens. Furthermore, the CRISPR/Cas system exhibits promise in the identification of antibiotic-resistant strains. Nevertheless, this technology is not without challenges that need to be resolved. For example, CRISPR/Cas systems must overcome natural off-target effects and require high-quality nucleic acid samples to improve sensitivity and specificity. In addition, limited applicability due to the protospacer adjacent motif (PAM) needs to be addressed to increase its versatility. Despite the challenges, we are optimistic about the future of bacterial detection using CRISPR/Cas. We have already highlighted its potential in medical microbiology. As research progresses, this technology will revolutionize the detection of bacterial infections.
Collapse
Affiliation(s)
- Huatao Lan
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
3
|
Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Structural Insights into Protein-Aptamer Recognitions Emerged from Experimental and Computational Studies. Int J Mol Sci 2023; 24:16318. [PMID: 38003510 PMCID: PMC10671752 DOI: 10.3390/ijms242216318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy;
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
4
|
Troisi R, Napolitano V, Rossitto E, Osman W, Nagano M, Wakui K, Popowicz G, Yoshimoto K, Sica F. Steric hindrance and structural flexibility shape the functional properties of a guanine-rich oligonucleotide. Nucleic Acids Res 2023; 51:8880-8890. [PMID: 37503836 PMCID: PMC10484730 DOI: 10.1093/nar/gkad634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Ligand/protein molecular recognition involves a dynamic process, whereby both partners require a degree of structural plasticity to regulate the binding/unbinding event. Here, we present the characterization of the interaction between a highly dynamic G-rich oligonucleotide, M08s-1, and its target protein, human α-thrombin. M08s-1 is the most active anticoagulant aptamer selected thus far. Circular dichroism and gel electrophoresis analyses indicate that both intramolecular and intermolecular G-quadruplex structures are populated in solution. The presence of thrombin stabilises the antiparallel intramolecular chair-like G-quadruplex conformation, that provides by far the main contribution to the biological activity of the aptamer. The crystal structure of the thrombin-oligonucleotide complex reveals that M08s-1 adopts a kinked structural organization formed by a G-quadruplex domain and a long duplex module, linked by a stretch of five purine bases. The quadruplex motif hooks the exosite I region of thrombin and the duplex region is folded towards the surface of the protein. This structural feature, which has never been observed in other anti-exosite I aptamers with a shorter duplex motif, hinders the approach of a protein substrate to the active site region and may well explain the significant increase in the anticoagulant activity of M08s-1 compared to the other anti-exosite I aptamers.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Valeria Napolitano
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Emanuele Rossitto
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Waleed Osman
- Research and Development Division, LinkBIO Co., Ltd., The ICI Center, 5270 Terada, Toride-shi, Ibaraki 302-0021, Japan
| | - Masanobu Nagano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Koji Wakui
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Keitaro Yoshimoto
- Research and Development Division, LinkBIO Co., Ltd., The ICI Center, 5270 Terada, Toride-shi, Ibaraki 302-0021, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| |
Collapse
|
5
|
Zamay T, Zamay S, Luzan N, Fedotovskaya V, Masyugin A, Zelenov F, Koshmanova A, Nikolaeva E, Kirichenko D, Veprintsev D, Kolovskaya O, Shchugoreva I, Zamay G, Lapin I, Lukyanenko A, Borus A, Sukhachev A, Volochaev M, Lukyanenko K, Shabanov A, Zabluda V, Zhizhchenko A, Kuchmizhak A, Sokolov A, Narodov A, Prokopenko V, Galeev R, Svetlichnyi V, Kichkailo A. Magnetic Nanoscalpel for the Effective Treatment of Ascites Tumors. J Funct Biomater 2023; 14:jfb14040179. [PMID: 37103269 PMCID: PMC10145876 DOI: 10.3390/jfb14040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
One of the promising novel methods for radical tumor resection at a single-cell level is magneto-mechanical microsurgery (MMM) with magnetic nano- or microdisks modified with cancer-recognizing molecules. A low-frequency alternating magnetic field (AMF) remotely drives and controls the procedure. Here, we present characterization and application of magnetic nanodisks (MNDs) as a surgical instrument ("smart nanoscalpel") at a single-cell level. MNDs with a quasi-dipole three-layer structure (Au/Ni/Au) and DNA aptamer AS42 (AS42-MNDs) on the surface converted magnetic moment into mechanical and destroyed tumor cells. The effectiveness of MMM was analyzed on Ehrlich ascites carcinoma (EAC) cells in vitro and in vivo using sine and square-shaped AMF with frequencies from 1 to 50 Hz with 0.1 to 1 duty-cycle parameters. MMM with the "Nanoscalpel" in a sine-shaped 20 Hz AMF, a rectangular-shaped 10 Hz AMF, and a 0.5 duty cycle was the most effective. A sine-shaped field caused apoptosis, whereas a rectangular-shaped field caused necrosis. Four sessions of MMM with AS42-MNDs significantly reduced the number of cells in the tumor. In contrast, ascites tumors continued to grow in groups of mice and mice treated with MNDs with nonspecific oligonucleotide NO-MND. Thus, applying a "smart nanoscalpel" is practical for the microsurgery of malignant neoplasms.
Collapse
Affiliation(s)
- Tatiana Zamay
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Sergey Zamay
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Natalia Luzan
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Victoriya Fedotovskaya
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | | | | | - Anastasia Koshmanova
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Elena Nikolaeva
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Daria Kirichenko
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Dmitry Veprintsev
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Olga Kolovskaya
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Irina Shchugoreva
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Galina Zamay
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Ivan Lapin
- Laboratory of Advanced Materials and Technology, Siberian Physical Technical Institute, Tomsk State University, Tomsk 634050, Russia
| | - Anna Lukyanenko
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Andrey Borus
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Alexander Sukhachev
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Mikhail Volochaev
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Kirill Lukyanenko
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Alexandr Shabanov
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Vladimir Zabluda
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Alexey Zhizhchenko
- Institute of Automation and Control Processes (IACP), Far Eastern Branch of the Russian Academy of Science, Vladivostok 690041, Russia
- Far Eastern Federal University, Vladivostok 690950, Russia
| | - Aleksandr Kuchmizhak
- Institute of Automation and Control Processes (IACP), Far Eastern Branch of the Russian Academy of Science, Vladivostok 690041, Russia
- Far Eastern Federal University, Vladivostok 690950, Russia
| | - Alexey Sokolov
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Andrey Narodov
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Vladimir Prokopenko
- V.P. Astafiev Krasnoyarsk State Pedagogical University, Krasnoyarsk 660049, Russia
| | - Rinat Galeev
- JSC «NPP «Radiosviaz», Krasnoyarsk 660021, Russia
| | - Valery Svetlichnyi
- Laboratory of Advanced Materials and Technology, Siberian Physical Technical Institute, Tomsk State University, Tomsk 634050, Russia
| | - Anna Kichkailo
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| |
Collapse
|
6
|
Hmila I, Sudhakaran IP, Ghanem SS, Vaikath NN, Poggiolini I, Abdesselem H, El-Agnaf OMA. Inhibition of α-Synuclein Seeding-Dependent Aggregation by ssDNA Aptamers Specific to C-Terminally Truncated α-Synuclein Fibrils. ACS Chem Neurosci 2022; 13:3330-3341. [PMID: 36348612 DOI: 10.1021/acschemneuro.2c00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neuropathologically, Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of insoluble aggregates of α-synuclein (α-syn) in the Lewy bodies (LBs). In addition to full-length α-syn fibrils, C-terminally truncated α-syn is also abundant in the LBs that acts as seeds and facilitates the aggregation of the full-length α-syn in vitro and in vivo and induces toxicity. Hence, identifying molecules that can inhibit the seeding activity of these truncated forms is of great importance. Here, we report the first in vitro selection of aptamers targeting the fibrillar forms of different C-terminally truncated α-syn using systematic evolution by an exponential enrichment method followed by quantitative high-throughput DNA sequencing. We identify a panel of aptamers that bound with high specificity to different truncated forms of α-syn fibrils with no cross-reactivity toward other amyloid fibrils. Interestingly, two of the aptamers (named Apt11 and Apt15) show higher affinity to most C-terminally truncated forms of α-syn fibrils with an evident inhibition of α-syn-seeded aggregation in vitro by Apt11. This inhibition is further confirmed by circular dichroism, Congo red binding assay, and electronic microscopy. Moreover, Apt11 is also found to reduce the insoluble phosphorylated form of α-syn at Ser-129 (pS129-α-syn) in the cell model and also can inhibit α-syn aggregation using RT-QuIC reactions seeded with brain homogenates extracted from patients affected by PD. The aptamers discovered in this study represent potential useful tools for research and diagnostics or therapy toward PD and DLB.
Collapse
Affiliation(s)
- Issam Hmila
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Indulekha P Sudhakaran
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Simona S Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Ilaria Poggiolini
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Houari Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
7
|
Lin J, Li H, Guo J, Xu Y, Li H, Yan J, Wang Y, Chen H, Yuan Z. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer's disease. Nanomedicine (Lond) 2022; 17:1191-1211. [PMID: 36154269 DOI: 10.2217/nnm-2022-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is well known for its insidious nature, slow progression and high incidence as a neurodegenerative disease. In the past, diagnosis of AD mainly depended on analysis of a patient's cognitive ability and behavior. Without a unified standard for analysis methods, this is prone to produce incorrect diagnoses. Currently, definitive diagnosis mainly relies on histopathological examination. Because of the advantages of precision, noninvasiveness, low toxicity and high spatiotemporal resolution, fluorescent nanoprobes are suitable for the early diagnosis of AD. This review summarizes the research progress of different kinds of fluorescent nanoprobes for AD diagnosis and therapy in recent years and provides an outlook on the development prospects of fluorescent nanoprobes.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hanhan Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jingxuan Guo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yuxin Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| |
Collapse
|
8
|
Aptamers: Functional-Structural Studies and Biomedical Applications. Int J Mol Sci 2022; 23:ijms23094796. [PMID: 35563186 PMCID: PMC9101710 DOI: 10.3390/ijms23094796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
|