1
|
Nuechterlein N, Shelbourn A, Szulzewsky F, Arora S, Casad M, Pattwell S, Merino-Galan L, Sulman E, Arowa S, Alvinez N, Jung M, Brown D, Tang K, Jackson S, Stoica S, Chittaboina P, Banasavadi-Siddegowda YK, Wirsching HG, Stella N, Shapiro L, Paddison P, Patel AP, Gilbert MR, Abdullaev Z, Aldape K, Pratt D, Holland EC, Cimino PJ. Haploinsufficiency of phosphodiesterase 10A activates PI3K/AKT signaling independent of PTEN to induce an aggressive glioma phenotype. Genes Dev 2024; 38:273-288. [PMID: 38589034 PMCID: PMC11065166 DOI: 10.1101/gad.351350.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Michelle Casad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Siobhan Pattwell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, USA
| | - Leyre Merino-Galan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, USA
| | - Erik Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 11220, USA
| | - Sumaita Arowa
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Neriah Alvinez
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Miyeon Jung
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Desmond Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Kayen Tang
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Sadhana Jackson
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Stefan Stoica
- Neurosurgery Unit for Pituitary and Inheritable Diseases, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Prashant Chittaboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Yeshavanth K Banasavadi-Siddegowda
- Molecular and Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Hans-Georg Wirsching
- Department of Neurology, University Hospital, University of Zurich, Zurich 8091, Switzerland
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Linda Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Patrick Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina 27710, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA;
| |
Collapse
|
2
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|