1
|
Arabmofrad S, Lazzara G, Miller R, Jafari SM. Surface modification of bentonite and montmorillonite as novel nano-adsorbents for the removal of phenols, heavy metals and drug residues. Adv Colloid Interface Sci 2024; 334:103334. [PMID: 39489119 DOI: 10.1016/j.cis.2024.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Montmorillonite (Mt) is one of the eco-friendly and low-cost nano-adsorbents for water and wastewater treatment. Interactions of Mt. with various modifiers such as surfactants and polymers make it an ideal adsorbent with good selectivity for the removal of phenols, heavy metals and drug residues from water and wastewater. Surface modification can improve the adsorption potential of Mt. due to increasing the number of adsorption sites and functional groups to remove a wide variety of contaminants. This paper shows a general overview of the structure, adsorptive characteristics, and applications of Mt. and modified Mt. (m-Mt). Also, recent progress made in using of natural and modified bentonite and Mt. for removing phenols, heavy metals and pharmaceuticals from water and wastewater are explained. Furthermore, it discusses the strategies used to increase the adsorption capacity of Mt. by surface modification with cationic surfactants, acids, and polymers. This article delivers an exploration of the current uses of bentonite and Mt. for water and wastewater treatment and encouraging results obtained in this review could aid in the application Mt. and m-Mt for the recovery of high added value compounds and removal of contaminants from aquatic systems.
Collapse
Affiliation(s)
- Sara Arabmofrad
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Giuseppe Lazzara
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - Reinhard Miller
- TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Hamdi S, Míguez-González A, Cela-Dablanca R, Barreiro A, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E. Natural and modified clays as low-cost and ecofriendly materials to remove salinomycin from environmental compartments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122158. [PMID: 39151338 DOI: 10.1016/j.jenvman.2024.122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Antibiotics in the environment represent a substantial pollution threat. Among these emerging pollutants, ionophore anticoccidials are of special concern due to their potential ecological impact, persistence in the environment, and role in promoting antimicrobial resistance. To investigate the adsorption/desorption of the ionophore antibiotic salinomycin (SAL) on/from raw and modified clay adsorbents, batch-type experiments were performed using 0.5 g of clay adsorbent mixed with 10 mL of increasing doses of SAL solutions for each sample, at room temperature, with a contact time of 24 h. All measurements were conducted in triplicate employing HPLC-UV equipment. Three different natural (raw) and modified clay samples were investigated, which were denominated as follows: AM (with 51% calcite), HJ1 (with 32% kaolinite), and HJ2 (with 32% microcline). The experiments were carried out using three pH ranges: between 3.33 and 4.49 for acid-activated clays, 8.39-9.08 for natural clays, and 9.99-10.18 for base-activated clays. The results indicated that, when low concentrations of the antibiotic were added (from 5 to 20 μmol L-1), more than 98% of SAL was strongly adsorbed by almost all clays, irrespective of the physicochemical and mineralogical composition of the clays or their pH values. When higher SAL concentrations were added (40 and 100 μmol L-1), the adsorption of the antibiotic showed pH-dependent ligand adsorption mechanisms: (i) highly decreased as the pH raised (for the raw and base-activated AM and HJ1 clays), while (ii) slightly decreased as the pH decreased (on the acid-activated clays). Among the adsorption equations tested (Freundlich, Langmuir, and Linear), the Freundlich model was identified as the most suitable for fitting the data corresponding to SAL adsorption onto the studied clays. SAL desorption from clays was consistently below 10% for all the clay samples, especially for the acid-activated clays, due to cation bridging adsorption mechanisms, when the lowest concentration of the antibiotic was added. Additionally, it should be stressed that the desorption values can increase with rising SAL concentrations, but they always remain below 20%. Overall, the clays here investigated (both raw and modified) provide a cost-effective and efficient alternative for the removal of the veterinary anticoccidial antibiotic SAL, with potential positive and practical implications in environmental remediation and antibiotic pollution management, particularly by serving as amendments for contaminated soils to enhance their adsorption capacities against SAL. Additionally, using these clays in water treatment processes could improve the efficiency of mitigating antibiotic contamination in aquatic systems.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne 5019, Monastir, Tunisia
| | - Ainoa Míguez-González
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - María J Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
3
|
Zhu J, Wang X, Jiang Q, Duan J, Wang H. Green electrospun Janus membrane of polyether block amide (PEBA) doped with hierarchical magnesium hydrogen phosphate for the removal of pharmaceuticals and personal care products. J Colloid Interface Sci 2024; 667:32-43. [PMID: 38615621 DOI: 10.1016/j.jcis.2024.03.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
It has been a challenge to prepared polyether block amide (PEBA) fibrous membrane via solution electrospinning. The only few reported methods though involved hazardous solvents and surfactants which were against the principle of green chemistry. In this work, uniform fibrous membrane of PEBA was successfully fabricated by solution electrospinning with a bio-based solvent dihydrolevoglucosenone (Cyrene). To further improve the mechanical strength and adsorption performance of the PEBA membrane, a hierarchical magnesium hydrogen phosphate (MgHPO4·1.2H2O, MHP) was synthesized to blend evenly into the PEBA matrix. A Janus MHP/PEBA membrane with one side of hydrophobic surface and the other side of hydrophilic surface was subsequently prepared, which exhibited fast adsorption, high capacity, good selectivity and reusability towards ibuprofen, acetaminophen, carbamazepine and triclosan. In addition, the Janus membrane showed high removal efficiency of the above contaminants in secondary wastewater effluent with good long term stability. It demonstrated that this Janus MHP/PEBA membrane had a good potential in practical wastewater treatment.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quantong Jiang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haizeng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Sanjeev NO, Vallabha MS, Valsan AE. Azadirachta indica leaf extract based green-synthesized ZnO nanoparticles coated on spent tea waste activated carbon for pharmaceuticals and personal care products removal. ENVIRONMENTAL RESEARCH 2024; 252:119047. [PMID: 38704006 DOI: 10.1016/j.envres.2024.119047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in aqueous systems, posing threat to both human health and environment. In prior research, predominant focus has been on examining various adsorbents for removing PPCPs from single-pollutant systems. However, no study has delved into simultaneous adsorption of PPCPs multi-pollutant mixture. This study evaluates performance of Azadirachta indica leaf extract-based green-synthesized ZnO nanoparticles coated on spent tea waste activated carbon (ZTAC) for removing sulfadiazine (SZN) and acetaminophen (ACN). Adsorption investigations were conducted in single-component (ACN/SZN) and binary-component (ACN + SZN) systems. The synthesized ZTAC was characterized using SEM, XRD, FTIR, EDX, porosimetry and pHpzc analysis. The study examines impact of time (1-60 min), dose (0.2-4 g/L), pH (2-12) and PPCPs concentration (1-100 mg/L) on ACN and SZN removal. Various kinetic and isotherm models were employed to elucidate mechanisms involved in sorption of PPCPs. Furthermore, synergistic and antagonistic aspects of sorption process in multi-component system were investigated. ZTAC, characterized by its crystalline nature and surface area of 980.85 m2/g, exhibited maximum adsorption capacity of 47.39 mg/g for ACN and 34.01 mg/g for SZN under optimal conditions of 15 min, 3 g/L and pH 7. Langmuir isotherm and pseudo-second-order kinetic model best-fitted the experimental data indicating chemisorption mechanism. Removal of ACN and SZN on ZTAC demonstrated synergistic nature, signifying cooperative adsorption. Overall, valorization of ZTAC offers effective and efficient adsorbent for elimination of PPCPs from wastewater.
Collapse
Affiliation(s)
- Nayanathara O Sanjeev
- Department of Civil Engineering, National Institute of Technology Calicut, 673601, Kerala, India.
| | | | - Aswathy E Valsan
- Department of Civil Engineering, National Institute of Technology Calicut, 673601, Kerala, India
| |
Collapse
|
5
|
Feng F, Zhang Y, Zhang X, Mu B, Qu W, Wang P. Natural Nano-Minerals (NNMs): Conception, Classification and Their Biomedical Composites. ACS OMEGA 2024; 9:17760-17783. [PMID: 38680370 PMCID: PMC11044256 DOI: 10.1021/acsomega.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Natural nano-minerals (NNMs) are minerals that are derived from nature with a size of less than 100 nm in at least one dimension in size. NNMs have a number of excellent properties due to their unique nanostructure and have been applied in various fields in recent years. They are rising stars in various disciplines, such as materials, biomedicine, and chemistry, taking advantage of their huge surface area, multiple active sites, excellent adsorption capacity, large quantity, low cost, and nontoxicity, etc. To provide a more comprehensive overview of NNMs and the biomedical applications of NNMs-based nanocomposites, this review classifies NNMs into three types by dimension, lists the structure and properties of typical NNMs, and illustrates their biomedical applications. Furthermore, a novel concept of natural nanomineral medical materials (NNMMs) is proposed, focusing on the medical value of NNMs. In addition, this review attempts to address the current challenges and delineate future directions for the advancement of NNMs. With the deepening of biomedical applications, it is believed that NNMMMs will inevitably play an important role in the field of human health and contribute to its promotion.
Collapse
Affiliation(s)
- Feng Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Xiao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenjie Qu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Peixia Wang
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China
- Beijing Narcotics Control Technology Center, Beijing, 100164, China
| |
Collapse
|
6
|
Mansouri F, Chouchene K, Wali A, Labille J, Roche N, Ksibi M. Adsorption of anti-inflammatory and analgesic drugs traces in water on clay minerals. CHEMOSPHERE 2024; 353:141469. [PMID: 38387661 DOI: 10.1016/j.chemosphere.2024.141469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/23/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
The aim of this study was to assess the adsorption of four non-steroidal anti-inflammatory drugs (NSAIDs), namely Paracetamol (PRC), Diclofenac (DIC), Ibuprofen (IBU), and Ketoprofen (KET), using both batch and continuous experiments with clay. Various analytical techniques, including XRD, FTIR, SEM coupled to EDX, and Zeta potential, were employed to characterize both raw and calcined clay. XRD and FTIR analyses confirmed the kaolinite nature of the clay. SEM data revealed a lamellar structure formed in the clay after calcination at 550 °C. Adsorption tests were conducted to determine the optimal adsorption conditions. Batch kinetics of adsorption demonstrated rapid adsorption of all four NSAIDs, with the highest adsorption occurring at pH 4 (DIC, IBU, and KET) and pH 6 for PRC, using a concentration of 20 mg L-1 of calcined clay. Additionally, the pseudo-second-order model provided the best fit for all NSAIDs adsorption processes. Maximum adsorption capacities, as determined by the Langmuir model, were 80 mg g-1 for PRC, 238 mg -1g for DIC, 138 mg g-1 for IBU, and 245 mg g-1 for KET. In fixed bed column studies, three dynamic models (Thomas, Adams-Bohart, and Yoon-Nelson) were utilized to describe the breakthrough curves, with linear regression used to identify key characteristics for process design. The fixed bed column adsorption study revealed that DIC exhibited the highest removal efficiency at 98%, while KET, IBU, and PRC were more persistent, with removal efficiencies of 77.1%, 76.7%, and 67.1%, respectively. The Thomas model was deemed appropriate for describing the breakthrough curve. These findings offer valuable insights into the interactions between clay and pharmaceuticals with varying physicochemical properties. They also provide information on the adsorption models, saturation, and adsorption capacities of various pharmaceuticals on natural clays, which can be crucial for further research and environmental remediation efforts.
Collapse
Affiliation(s)
- Fatma Mansouri
- Higher Institute of Water Sciences and Techniques, University of Gabes, Gabes, 6072, Tunisia; Laboratory of Environmental Engineering and Ecotechnology, National School of Engineers of Sfax (ENIS), University of Sfax, Route de Soukra Km 3.5, Po. Box 1175, 3038, Sfax, Tunisia.
| | - Khawla Chouchene
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, University of Sfax, PO 10 Box 1177, 3018, Sfax, Tunisia
| | - Ahmed Wali
- Laboratory of Environmental Engineering and Ecotechnology, National School of Engineers of Sfax (ENIS), University of Sfax, Route de Soukra Km 3.5, Po. Box 1175, 3038, Sfax, Tunisia
| | - Jerome Labille
- Aix-Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, CEDEX, 13454, Aix-en-Provence, France
| | - Nicolas Roche
- Aix-Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, CEDEX, 13454, Aix-en-Provence, France; International Water Research Institute, Mohammed VI Polytechnic University, 43150, Benguerir, Morocco
| | - Mohamed Ksibi
- Laboratory of Environmental Engineering and Ecotechnology, National School of Engineers of Sfax (ENIS), University of Sfax, Route de Soukra Km 3.5, Po. Box 1175, 3038, Sfax, Tunisia
| |
Collapse
|
7
|
Mapukata S, Ntsendwana B, Mokhena T, Sikhwivhilu L. Advances on sonophotocatalysis as a water and wastewater treatment technique: efficiency, challenges and process optimisation. Front Chem 2023; 11:1252191. [PMID: 37681207 PMCID: PMC10482105 DOI: 10.3389/fchem.2023.1252191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Due to water shortage and increased water pollution, various methods are being explored to improve water quality by treating contaminants. Sonophotocatalysis is a combination of two individual water treatment processes i.e., photocatalysis and sonocatalysis. With advantages including shorter reaction times and enhanced activity, this technique shows possible futuristic applications as an efficient water treatment technology. Herein, background insight on sonophotocalysis as a water and wastewater treatment technique as well as the general mechanism of activity is explained. The commonly used catalysts for sonophotocatalytic applications as well as their synthesis pathways are also briefly discussed. Additionally, the utilisation of sonophotocatalysis for the disinfection of various microbial species as well as treatment of wastewater pollutants including organic (dyes, pharmaceuticals and pesticides) and inorganic species (heavy metals) is deliberated. This review also gives a critical analysis of the efficiency, enhancement strategies as well as challenges and outlooks in this field. It is thus intended to give insight to researchers in the context of facilitating future developments in the field of water treatment, and advancing sonophotocatalysis towards large-scale implementation and commercialization.
Collapse
Affiliation(s)
- Sivuyisiwe Mapukata
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Bulelwa Ntsendwana
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Teboho Mokhena
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Lucky Sikhwivhilu
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
8
|
Gharous M, Bounab L, Pereira FJ, Choukairi M, López R, Aller AJ. Electrochemical Kinetics and Detection of Paracetamol by Stevensite-Modified Carbon Paste Electrode in Biological Fluids and Pharmaceutical Formulations. Int J Mol Sci 2023; 24:11269. [PMID: 37511028 PMCID: PMC10378910 DOI: 10.3390/ijms241411269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Paracetamol (PCT), or acetaminophen, is an important drug used worldwide for various clinical purposes. However, the excessive or indiscriminate use of PCT can provoke liver and kidney dysfunction; hence, it is essential to determine the amount of this target in biological samples. In this work, we develop a quick, simple, and sensitive voltammetric method using chemically modified electrodes to determine PCT in complex matrices, including human serum and commercial solid formulations. We modify the carbon paste electrode with stevensite monoclinic clay mineral (Stv-CPE), using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy to characterise and detect PCT. The kinetics study provides a better electrochemical characterisation of the electrode behaviour, finding the detection and quantitation limits of 0.2 μM and 0.5 μM under favourable conditions. Further, the best linear working concentration range is 0.6-100 μM for PCT, applying the proposed method to the quantitative determination of PCT content in reference tablet formulations and biological samples for validation.
Collapse
Affiliation(s)
- Moaad Gharous
- Laboratory of Materials and Interfacial Systems, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
- Research Group of Advanced Materials, Structures and Civil Engineering, National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Loubna Bounab
- Research Group of Advanced Materials, Structures and Civil Engineering, National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Fernando J Pereira
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| | - Mohamed Choukairi
- Laboratory of Materials and Interfacial Systems, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Roberto López
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| | - A Javier Aller
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| |
Collapse
|
9
|
Soriano-Correa C, Pérez de la Luz A, Sainz-Díaz CI. Adsorption of Capsaicin into the Nanoconfined Interlayer Space of Montmorillonite by DFT Calculations. J Pharm Sci 2023; 112:798-807. [PMID: 36354079 DOI: 10.1016/j.xphs.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Capsaicin is the main compound responsible of the hot sense of the chili fruits. This compound has interesting therapeutic properties including anticancer, anti-inflammatory effects, and analgesic. However, its use has several secondary effects, such as skin irritation and allergies. Then, new therapeutic strategies are searched in order to overcome these problems. Montmorillonite has proved to be an excellent excipient for the release of pharmaceutical drugs. In this work, the molecular structure and crystal structure of capsaicin, and the adsorption of this molecule into the interlayer space of montmorillonite have been studied using quantum mechanical calculations based on Density Functional Theory (DFT) level of theory and molecular dynamics simulations. The crystal structure has been predicted with these calculations and the intermolecular interactions have been determined with a higher resolution than the previous experimental data. The adsorption of capsaicin into the confined interlayer space of montmorillonite is energetically favourable with low and high octahedral charge. This adsorption can be monitored by IR spectroscopy observing frequency shifts in some bands during the adsorption. This enhances the use of these clay minerals for capsaicin therapeutic formulations.
Collapse
Affiliation(s)
- Catalina Soriano-Correa
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Av. de las Palmeras, 4, 18100-Armilla, Granada, Spain; Unidad de Química Computacional, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Alexander Pérez de la Luz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Av. de las Palmeras, 4, 18100-Armilla, Granada, Spain; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City, 09340, Mexico
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Av. de las Palmeras, 4, 18100-Armilla, Granada, Spain.
| |
Collapse
|
10
|
Bhuyan A, Ahmaruzzaman M. Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39377-39417. [PMID: 36752919 DOI: 10.1007/s11356-023-25707-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
With rapid increase in the human population, a large amount of wastewater is generated every year. The availability of fresh water is decreasing at an alarming rate due to rapid industrialization and agricultural development. Pharmaceutical drugs which are credited for improving standards of life worldwide have emerged as major water contaminants, raising global concern about their potential risk to human health and environment. The presence of pharmaceutical compounds is detected in surface water (sea, river, lakes, etc.), groundwater, effluents from municipal, hospitals, and wastewater treatment plants, and even in drinking water. Efficient removal of pharmaceutical pollutants still remains a challenging task. Many techniques, including photodegradation, photocatalysis, oxidation, reverse osmosis, biodegradation, nanofiltration, adsorption, etc., have been used for the remediation of wastewater. Adsorption of pharmaceutical compounds on nanoadsorbents, as a low-cost and feasible technology, has gained immense popularity for wastewater treatment over the last decade. Adsorption techniques can be integrated with wastewater treatment plants to achieve efficient removal on an industrial level. Herein, we review the literature on the remediation techniques used for the pharmaceutical waste treatment using carbon nanotubes, metal oxides, nanoclay, and new-generation MXenes via adsorption. These materials show excellent adsorptive properties owing to their high surface area, low cost, high porosity, easy functionalization, and high surface reactivity. The adsorption mechanism of the nanoadsorbents and their reusability as a factor of sustainability have also been included in the review. The factors affecting the adsorption, including pH, the concentration of adsorbate, ionic strength, and adsorbate dose, have also been discussed.
Collapse
Affiliation(s)
- Anindita Bhuyan
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
11
|
Evaluation of the Adsorption Efficacy of Bentonite on Aflatoxin M 1 Levels in Contaminated Milk. Toxins (Basel) 2023; 15:toxins15020107. [PMID: 36828421 PMCID: PMC9966358 DOI: 10.3390/toxins15020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The existence of aflatoxin M1 (AFM1) in raw milk results in economic losses and public health risks. This research aims to examine the capability of bentonite to adsorb and/or eliminate AFM1 from various raw milk types. In addition, the effects of numerous bentonites (HAFR 1, 2, 3 and 4) on the nutritional characteristics of the milk were studied. Our findings revealed that goat milk had the highest value of AFM1 (490.30 ng/L) in comparison to other milks. AFM1 adsorption was influenced by applying bentonite (0.5 and 1 g) in a concentration-dependent manner for different time intervals (from 0 to 12 h). The percentage of AFM1 reached the maximum adsorption level after 12 h to 100, 98.5 and 98% for bentonites HAFR 3, 1 and 2, respectively. HAFR 3 (1 g bentonite) presented higher adsorption efficiency than other bentonites used in the phosphate buffer saline (PBS) and milk. Residual levels of AFM1 reached their lowest values of 0 and 1.5 ng/L while using HAFR 3 in PBS and milk, respectively. With regard to the influence of bentonite on the nutritional characteristics of milk, there was an increase in fat, protein and solid non-fat ratio while using HAFR 3 and 4, yet decreased lactose in comparison with the control. Scanning Electron Microscopy and Fourier Transform-Infrared Spectroscopy both identified bentonites as superior AFM1 binders. The results demonstrated that bentonite, particularly HAFR 3, was the most effective adsorbent and could thus be a promising candidate for the decontamination of AFM1 in milk.
Collapse
|
12
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Azeez L, Adebisi SA, Adejumo AL, Busari HK, Aremu HK, Olabode OA, Awolola O. Adsorptive properties of rod-shaped silver nanoparticles-functionalized biogenic hydroxyapatite for remediating methylene blue and congo red. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Carbamazepine Removal by Clay-Based Materials Using Adsorption and Photodegradation. WATER 2022. [DOI: 10.3390/w14132047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbamazepine (CBZ) is one of the most common emerging contaminants released to the aquatic environment through domestic and pharmaceutical wastewater. Due to its high persistence through conventional degradation treatments, CBZ is considered a typical indicator for anthropogenic activities. This study tested the removal of CBZ through two different clay-based purification techniques: adsorption of relatively large concentrations (20–500 μmol L−1) and photocatalysis of lower concentrations (<20 μmol L−1). The sorption mechanism was examined by FTIR measurements, exchangeable cations released, and colloidal charge of the adsorbing clay materials. Photocatalysis was performed in batch experiments under various conditions. Despite the neutral charge of carbamazepine, the highest adsorption was observed on negatively charged montmorillonite-based clays. Desorption tests indicate that adsorbed CBZ is not released by washing. The adsorption/desorption processes were confirmed by ATR-FTIR analysis of the clay-CBZ particles. A combination of synthetic montmorillonite or hectorite with low H2O2 concentrations under UVC irradiation exhibits efficient homo-heterogeneous photodegradation at μM CBZ levels. The two techniques presented in this study suggest solutions for both industrial and municipal wastewater, possibly enabling water reuse.
Collapse
|
15
|
Biodegradation of Tetracycline Antibiotics by the Yeast Strain Cutaneotrichosporon dermatis M503. Microorganisms 2022; 10:microorganisms10030565. [PMID: 35336139 PMCID: PMC8955161 DOI: 10.3390/microorganisms10030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the Cutaneotrichosporon dermatis strain M503 was isolated and could efficiently degrade tetracycline, doxycycline, and chlorotetracyline. The characteristics of tetracycline degradation were investigated under a broad range of cultural conditions. Response surface methodology (RSM) predicted that the highest degradation rate of tetracycline could be obtained under the following conditions: 39.69 °C, pH of 8.79, and inoculum dose of 4.0% (v/v, ~3.5 × 106 cells/mL in the medium). In accordance with the five identified degradation products of tetracycline, two putative degradation pathways, which included the shedding of methyl and amino groups, were proposed. Moreover, the well diffusion method showed that the strain of M503 decreases the antibacterial potency of tetracycline, doxycycline, and chlorotetracycline. These findings proposed a putative mechanism of tetracycline degradation by a fungus strain and contributed to the estimation of the fate of tetracycline in the aquatic environment.
Collapse
|