1
|
Chang X, Zhang X, Huang X, Yang Z, Zhang F. Transcriptome and metabolome analysis of the developmental changes in Cynanchum thesioides anther. Genomics 2024; 116:110884. [PMID: 38878835 DOI: 10.1016/j.ygeno.2024.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
Cynanchum thesioides, a xerophytic species utilized both as a medicinal herb and a food source, plays a significant role in arid and desert ecosystem management. Its inflorescence is an umbellate cyme, each carrying nearly a thousand flowers; however, its fruiting rate remains remarkably low. The normal development of the anther is a necessary prerequisite for plants to produce seeds. However, our understanding of the anther development process in Cynanchum thesioides remains limited. To better understand the pollen development process in Cynanchum thesioides, the stages of pollen development were determined through paraffin sectioning, and observations were made on the distribution characteristics of polysaccharides and lipid droplets in the pollen development of Cynanchum thesioides using Periodic Acid-Schiff stain (PAS) and 0.5% Sudan Black B tissue staining. Concurrently, the gene expression patterns and metabolite profiles were delineated across various developmental stages of Cynanchum thesioides anthers (T1: microspore stage, T2: tetrad stage, T3: mononuclear stage, and T4: maturation stage). The findings revealed that Cynanchum thesioides pollen is in an aggregate form. Polysaccharides gradually accumulate during maturation and lipid droplets form a surrounding membrane, thereby preventing pollen dispersion. Furthermore, transcriptomic and metabolomic analyses across distinct developmental phases uncovered a plethora of differentially expressed genes and metabolites associated with the flavonoid biosynthesis pathway. Flavonoid levels exhibited dynamic changes concurrent with anther development, aligning with the gene regulatory patterns of the corresponding biosynthetic pathways. The study identified 63 differentially accumulated flavonoid compounds and 21 differentially expressed genes associated with flavonoid biosynthesis. Weighted gene co-expression network analysis revealed six MYB and ten bHLH transcription factors as key candidates involved in flavonoid biosynthesis, with CtbHLH (Cluster-6587.1050) and CtMYB (Cluster-6587.31743) specifically regulating structural genes within the pathway. These findings underscore the pivotal role of flavonoid biosynthesis in anther development of Cynanchum thesioides. In conclusion, this research offers a comprehensive insight into the anther development process in Cynanchum thesioides.
Collapse
Affiliation(s)
- Xiaoyao Chang
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Xiaoyan Zhang
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China
| | - Xiumei Huang
- Department of Horticulture and Landscape Technology, Inner Mongolia Agricultural University Vocational and technical College, Baotou City, Inner Mongolia, China
| | - Zhongren Yang
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China.
| | - Fenglan Zhang
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China.
| |
Collapse
|
2
|
Hake AA, Ballichatla S, Barbadikar KM, Magar N, Dutta S, Gokulan CG, Awalellu K, Patel HK, Sonti RV, Phule AS, Varma EP, Ayeella PG, Vamshi P, Sundaram RM, Maganti SM. Combined strategy employing MutMap and RNA-seq reveals genomic regions and genes associated with complete panicle exsertion in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:69. [PMID: 37622088 PMCID: PMC10444938 DOI: 10.1007/s11032-023-01412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Complete panicle exsertion (CPE) in rice is an important determinant of yield and a desirable trait in breeding. However, the genetic basis of CPE in rice still remains to be completely characterized. An ethyl methane sulfonate (EMS) mutant line of an elite cultivar Samba Mahsuri (BPT 5204), displaying stable and consistent CPE, was identified and named as CPE-110. MutMap and RNA-seq were deployed for unraveling the genomic regions, genes, and markers associated with CPE. Two major genomic intervals, on chromosome 8 (25668481-25750456) and on chromosome 11 (20147154-20190400), were identified to be linked to CPE through MutMap. A non-synonymous SNP (G/A; Chr8:25683828) in the gene LOC_Os08g40570 encoding pyridoxamine 5'-phosphate oxidase with the SNP index 1 was converted to Kompetitive allele-specific PCR (KASP) marker. This SNP (KASP 8-1) exhibited significant association with CPE and further validated through assay in the F2 mapping population, released varieties and CPE exhibiting BPT 5204 mutant lines. RNA-seq of the flag leaves at the booting stage, 1100 genes were upregulated and 1305 downregulated differentially in CPE-110 and BPT 5204. Metabolic pathway analysis indicated an enrichment of genes involved in photosynthesis, glyoxylate, dicarboxylate, porphyrin, pyruvate, chlorophyll, carotenoid, and carbon metabolism. Further molecular and functional studies of the candidate genes could reveal the mechanistic aspects of CPE. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01412-1.
Collapse
Affiliation(s)
- Anil A. Hake
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - Suneel Ballichatla
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | | | - Nakul Magar
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - Shubhankar Dutta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
- Research and Education in Cancer, Advanced Centre for Treatment, Navi Mumbai, Maharashtra 410210 India
| | - CG Gokulan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
| | - Komal Awalellu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
| | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Amol S. Phule
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | | | | | - Poloju Vamshi
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - R. M. Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - Sheshu Madhav Maganti
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
- ICAR-Central Tobacco Research Institute, Rajahmundry, Andhra Pradesh 533105 India
| |
Collapse
|