1
|
Deng Y, Qu X, Yao Y, Li M, He C, Guo S. Investigating the impact of pigmentation variation of breast muscle on growth traits, melanin deposition, and gene expression in Xuefeng black-bone chickens. Poult Sci 2024; 103:103691. [PMID: 38598910 PMCID: PMC11017053 DOI: 10.1016/j.psj.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The blackness traits, considered an important economic factor in the black-bone chicken industry, still exhibits a common phenomenon of significant difference in blackness of breast muscle. To improve this phenomenon, this study compared growth traits, blackness traits, and transcriptome of breast muscles between the High Blackness Group (H group) and Low Blackness Group (L group) in the Xuefeng black-bone chickens. The results are as follows: 1) There was no significant difference in growth traits between the H group and the L group (P > 0.05). 2) The skin/breast muscle L values in the H group were significantly lower than those in the L group, while the breast muscle melanin content exhibited the opposite trend (P < 0.05). 3) A significant negative correlation was observed between breast muscle melanin content and skin/breast muscle L value (P < 0.05), and skin L value exhibiting a significant positive correlation with breast muscle L value (P < 0.05). 4) The breast muscle transcriptome comparison between the H group and L group revealed 831 and 405 DEGs in female and male chickens, respectively. This included 37 shared DEGs significantly enriched in melanosome, pigment granule, and the melanogenesis pathway. Seven candidate genes (DCT, PMEL, MLANA, TYRP1, OCA2, EDNRB2, and CALML4) may play a crucial role in the melanin production of breast muscle in Xuefeng black-bone chicken. The findings could accelerate the breeding process for achieving desired levels of breast muscle blackness and contribute to the exploration of the mechanisms underlying melanin production in black-bone chickens.
Collapse
Affiliation(s)
- Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yaling Yao
- Animal Husbandry and Aquatic Products Bureau of Huaihua City, Huaihua 418200, Hunan, China
| | - Meichun Li
- Hunan Yunfeifeng Agriculture Co. Ltd., Huaihua 418200, Hunan, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
2
|
Yuan W, Qin H, Bi H, Zhao D, Zhang Y, Chen W. Ssc-mir-221-3p regulates melanin production in Xiang pigs melanocytes by targeting the TYRP1 gene. BMC Genomics 2023; 24:369. [PMID: 37393242 DOI: 10.1186/s12864-023-09451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/14/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate gene expression by down-regulating it. Several studies have suggested that miRNAs plays a crucial role in mammalian skin color production. The TYRP1 gene, a member of the tyrosine family, is an important candidate gene that affects melanogenesis. This study aimed to identify genes and miRNAs that affect melanin production in Xiang pigs by transcriptome sequencing, and to validate their targeted regulatory relationships. RESULTS 17 miRNAs and 1,230 genes were significantly differentially expressed (P < 0.05) in the black and white skin tissues of Jianbai Xiang pigs. miRNA-221-3p was identified as a candidate miRNA for melanin formation and its target gene, TYRP1, was selected. The TYRP1 gene is a member of the TYR gene family, which evolved from the TYR gene through chromosome segmental duplication. The function of the gene was highly conserved throughout the evolutionary process. overexpression of TYRP1 gene significantly increased the expression of TYR, TYRP1, and DCT genes P < 0.01, which led to an increase in the relative content of melanin. Silencing of TYRP1 through the use of TYRP1-siRNA significantly reduced the expression of TYR, TYRP1, and DCT genes in Jianbai Xiang pig melanocytes P < 0.01, which in turn decreased the relative melanin content. The targeted binding relationship between ssc-miR-221-3p and TYRP1 gene was validated. After transfection of porcine melanocytes with ssc-miR-221-3p mimic, the expression of ssc-miR-221-3p was significantly up-regulated (P < 0.01). Furthermore, the mRNA and protein levels of TYR, TYRP1, and DCT genes were significantly down-regulated (P < 0.01), and melanin content in cells was significantly reduced (P < 0.01). CONCLUSION The TYRP1 gene affects melanogenesis in melanocytes of Jianbai Xiang pigs, and ssc-miR-221-3p targets the TYRP1 gene to regulate melanogenesis in melanocytes of Jianbai Xiang pigs.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hai Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Huan Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Depeng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
3
|
Dolinska MB, Anderson DE, Sergeev YV. In vitro characterization of the intramelanosomal domain of human recombinant TYRP1 and its oculocutaneous albinism type 3-related mutant variants. Protein Sci 2023; 32:e4518. [PMID: 36412553 PMCID: PMC9793978 DOI: 10.1002/pro.4518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Tyrosinase related protein 1 (TYRP1) is the most abundant melanosomal protein of the melanocyte, where plays an important role in the synthesis of eumelanin, possibly catalyzing the oxidation of 5,6-dihydroxyindole-2-carboxylic acid to 5,6-quinone-2-carboxylic acid. Mutations to the TYRP1 gene can result in oculocutaneous albinism type 3 (OCA3), a rare disease characterized by reduced synthesis of melanin in skin, hair, and eyes. To investigate the effect of genetic mutations on the TYRP1 structure, function, and stability, we engineered the intramelanosomal domain of TYRP1 and its mutant variants mimicking either OCA3-related changes, C30R, H215Y, D308N, and R326H or R87G mutant variant, analogous to OCA1-related pathogenic effect in tyrosinase. Proteins were produced in Trichoplusia Ni larvae, then purified, and analyzed by biochemical methods. Data shows that D308N and R326H mutants keep the native conformations and demonstrate no change in their stability and enzymatic activity. In contrast, mutations C30R and R87G localized in the Cys-rich domain show the variants misfolding during the purification process. The H215Y variant disrupts the binding of Zn2+ in the active site and thus reduces the strength of the enzyme/substrate interactions. Our results, consistent with the clinical and in silico studies, show that mutations at the protein surface are expected to have a negligible phenotype change compared to that of TYRP1. For the mutations with severe phenotype changes, which were localized in the Cys-rich domain or the active site, we confirmed a complete or partial protein misfolding as the possible mechanism of protein malfunction caused by OCA3 inherited mutations.
Collapse
Affiliation(s)
| | - David E. Anderson
- National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Yuri V. Sergeev
- National Eye InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
4
|
Osuna I, Dolinska MB, Sergeev YV. In Vitro Reconstitution of the Melanin Pathway's Catalytic Activities Using Tyrosinase Nanoparticles. Int J Mol Sci 2022; 24:639. [PMID: 36614088 PMCID: PMC9820814 DOI: 10.3390/ijms24010639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The melanogenesis pathway is characterized by a series of reactions catalyzed by key enzymes, such as tyrosinase (TYR), tyrosinase-related protein 2 (TYRP2), and tyrosinase-related protein 1 (TYRP1), to produce melanin pigment. However, in vitro studies of the catalytic activity were incomplete because of a lack of commercially available enzyme substrates, such as dopachrome. Herein, human recombinant intra-melanosomal domains of key enzymes were produced in Trichoplusia ni (T. ni) larvae and then purified using a combination of chromatography techniques in catalytically active form. Using Michaelis-Menten kinetics, the diphenol oxidase activity of tyrosinase achieved the maximum production of native dopachrome at 10 min of incubation at 37 °C for TYR immobilized to magnetic beads (TYR-MB). The presence of dopachrome was confirmed spectrophotometrically at 475 nm through HPLC analysis and in the TYRP2-catalyzed reaction, yielding 5,6-dihydroxyindole-2-carboxylic acid (DHICA). In the TYRP1-driven oxidation of DHICA, the formation of 5,6-indolequinone-2-carboxylic acid (IQCA) was confirmed at ~560 nm. This is the first in vitro reconstitution of the reactions from the melanogenic pathway based on intra-melanosomal domains. In the future, this approach could be used for quantitative in vitro analysis of the melanin pathway, biochemical effects associated with inherited disease-related mutations, and drug screens.
Collapse
Affiliation(s)
| | | | - Yuri V. Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD 20891, USA
| |
Collapse
|
5
|
Dolinska MB, Woods T, Osuna I, Sergeev YV. Protein Biochemistry and Molecular Modeling of the Intra-Melanosomal Domain of Human Recombinant Tyrp2 Protein and OCA8-Related Mutant Variants. Int J Mol Sci 2022; 23:ijms23031305. [PMID: 35163231 PMCID: PMC8836267 DOI: 10.3390/ijms23031305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Tyrosinase-related protein 2 (Tyrp2) is involved in the melanogenesis pathway, catalyzing the tautomerization of dopachrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Recently, a new type of albinism was discovered with disease-causing mutations in the TYRP2 gene. Here, for the first time, we characterized the intra-melanosomal protein domain of Tyrp2 (residues 1-474) and missense variants C40S and C61W, which mimic the alterations found in genetic studies. Recombinant proteins were produced in the Trichoplusia Ni (Ti. Ni) larvae, purified by a combination of immobilized metal affinity (IMAC) and gel-filtration (GF) chromatography, and biochemically characterized. The mutants showed the protein expression in the lysates such as the wild type; however, undetectable protein yield after two steps of purification exhibited their misfolding and instability. In addition, the misfolding effect of the mutations was confirmed computationally using homology modeling and molecular docking. Together, experiments in vitro and computer simulations indicated the critical role of the Cys-rich domain in the Tyrp2 protein stability. The results are consistent with molecular modeling, global computational mutagenesis, and clinical data, proving the significance of genetic alterations in cysteine residues, which could cause oculocutaneous albinism type 8.
Collapse
|