1
|
Yang M, Yang S, Wang W, Wei X, Lou F, He G, He T. Multiomics Combined with Expression Pattern Analysis Reveals the Regulatory Response of Key Genes in Potato Jasmonic Acid Signaling Pathways to Cadmium Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22369-22384. [PMID: 39329331 DOI: 10.1021/acs.jafc.4c04883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Jasmonic acid (JA) is an endogenous phytohormone that regulates plant physiological metabolism and stress response processes, either independently or through hormone crosstalk. Our phytohormone assay and transcriptome-metabolome analysis revealed the key genes and metabolites involved in the JA pathway in response to 0-250 μM cadmium (Cd) in potato seedlings. Transcriptome gene set enrichment and gene ontology analysis indicated that JA-related genes were significantly enriched. Specifically, members from the StOPR and StJAZ gene families showed pronounced responses to Cd stress and methyl jasmonate treatment. As a negative regulatory transcription factor of the JA signaling pathway, StJAZ14 exhibited a decreasing trend under Cd stress. Yeast two-hybrid assay identified an interaction between StJAZ14 and StBZR1, which is located on the brassinolide pathway. In addition to unveiling the critical role of the JA pathway in regulating potato response to Cd stress, the functional mechanism was preliminarily explored.
Collapse
Affiliation(s)
- Mingfang Yang
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Big Data Application and Economics College, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P.R. China
| | - Sanwei Yang
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Weidong Wang
- Guizhou Mountain Livestock and Poultry Breeding Pollution Control and Resource Utilization Technology Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiaoliao Wei
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Fei Lou
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - GuanDi He
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Guizhou Mountain Livestock and Poultry Breeding Pollution Control and Resource Utilization Technology Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
2
|
Zhang H, Lu L. Transcription factors involved in plant responses to cadmium-induced oxidative stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1397289. [PMID: 38938636 PMCID: PMC11209895 DOI: 10.3389/fpls.2024.1397289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
Cadmium (Cd) is a heavy metal highly toxic to living organisms. Cd pollution of soils has become a serious problem worldwide, posing a severe threat to crop production and human health. When plants are poisoned by Cd, their growth and development are inhibited, chloroplasts are severely damaged, and respiration and photosynthesis are negatively affected. Therefore, elucidating the molecular mechanisms that underlie Cd tolerance in plants is important. Transcription factors can bind to specific plant cis-acting genes. Transcription factors are frequently reported to be involved in various signaling pathways involved in plant growth and development. Their role in the resistance to environmental stress factors, particularly Cd, should not be underestimated. The roles of several transcription factor families in the regulation of plant resistance to Cd stress have been widely demonstrated. In this review, we summarize the mechanisms of five major transcription factor families-WRKY, ERF, MYB, bHLH, and bZIP-in plant resistance to Cd stress to provide useful information for using molecular techniques to solve Cd pollution problems in the future.
Collapse
Affiliation(s)
- Hewan Zhang
- Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
4
|
Wang Z, Chen Z, Wu Y, Mu M, Jiang J, Nie W, Zhao S, Cui G, Yin X. Genome-wide identification and characterization of NAC transcription factor family members in Trifolium pratense and expression analysis under lead stress. BMC Genomics 2024; 25:128. [PMID: 38297198 PMCID: PMC10829316 DOI: 10.1186/s12864-023-09944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The NAC TF family is widely involved in plant responses to various types of stress. Red clover (Trifolium pratense) is a high-quality legume, and the study of NAC genes in red clover has not been comprehensive. The aim of this study was to analyze the NAC gene family of red clover at the whole-genome level and explore its potential role in the Pb stress response. RESULTS In this study, 72 TpNAC genes were identified from red clover; collinearity analysis showed that there were 5 pairs of large fragment replicators of TpNAC genes, and red clover was found to be closely related to Medicago truncatula. Interestingly, the TpNAC genes have more homologs in Arabidopsis thaliana than in soybean (Glycine max). There are many elements in the TpNAC genes promoters that respond to stress. Gene expression analysis showed that all the TpNAC genes responded to Pb stress. qRT-PCR showed that the expression levels of TpNAC29 and TpNAC42 were significantly decreased after Pb stress. Protein interaction network analysis showed that 21 TpNACs and 23 other genes participated in the interaction. In addition, the TpNAC proteins had three possible 3D structures, and the secondary structure of these proteins were mainly of other types. These results indicated that most TpNAC members were involved in the regulation of Pb stress in red clover. CONCLUSION These results suggest that most TpNAC members are involved in the regulation of Pb stress in red clover. TpNAC members play an important role in the response of red clover to Pb stress.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Zirui Chen
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yuchen Wu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Meiqi Mu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jingwen Jiang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Wanting Nie
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Siwen Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiujie Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Identification of the Major Effector StSROs in Potato: A Potential StWRKY- SRO6 Regulatory Pathway Enhances Plant Tolerance to Cadmium Stress. Int J Mol Sci 2022; 23:ijms232214318. [PMID: 36430795 PMCID: PMC9698690 DOI: 10.3390/ijms232214318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
SIMILAR TO RCD-ONE (SRO) family members and transcription factors (TFs) often improve plant antioxidant capacity through interaction and co-regulation and participate in plant resistance to drought and high-salt stress. However, whether SROs are involved in the response to heavy metal stress, especially SRO genes with a specific response and tolerance characteristics to cadmium (Cd) stress, remains unclear. We first identified six SRO genes in the potato genome by PARP and RST domains. Special and conserved StSROs were found, and the spatio temporal tissue-specific expression patterns and co-expression network diagrams of StSROs under the stress of 5 heavy metals were constructed. Second, we identified StSRO6 as a major effector gene (StSRO6-MEG) and StSRO5 as a secondary effector gene (StSRO5-SEG) through a comprehensive analysis. Interestingly, they may hold true for various physiological or stress responses in plants. In addition, using systematic genomics and comparative omics techniques, the key gene StSRO6 that affects the difference in Cd accumulation was discovered, cloned in the low-Cd accumulation "Yunshu 505", and transformed into the yeast mutant ycf1 for overexpression. The results proved that StSRO6 could confer Cd tolerance. Finally, through transient expression and in vitro culture tests, we hypothesized that StSROs 5/6 are regulated by the transcription factor StWRKY6 and mediates the reactive oxygen species (ROS) system to confer Cd tolerance. These findings offer a new perspective for understanding the mechanisms underlying Cd tolerance in plants, and simultaneously provide clues for the development of biological agents for preventing and controlling Cd migration and transformation.
Collapse
|
6
|
Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress. Int J Mol Sci 2022; 23:ijms23031734. [PMID: 35163656 PMCID: PMC8836122 DOI: 10.3390/ijms23031734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) pollution in cultivated land is caused by irresistible geological factors and human activities; intense diffusion and migration have seriously affected the safety of food crops. Plants have evolved mechanisms to control excessive influx of Cd in the environment, such as directional transport, chelation and detoxification. This is done by some specific metalloproteins, whose key amino acid motifs have been investigated by scientists one by one. The application of powerful cell biology, crystal structure science, and molecular probe targeted labeling technology has identified a series of protein families involved in the influx, transport and detoxification of the heavy metal Cd. This review summarizes them as influx proteins (NRAMP, ZIP), chelating proteins (MT, PDF), vacuolar proteins (CAX, ABCC, MTP), long-distance transport proteins (OPT, HMA) and efflux proteins (PCR, ABCG). We selected representative proteins from each family, and compared their amino acid sequence, motif structure, subcellular location, tissue specific distribution and other characteristics of differences and common points, so as to summarize the key residues of the Cd binding target. Then, we explain its special mechanism of action from the molecular structure. In conclusion, this review is expected to provide a reference for the exploration of key amino acid targets of Cd, and lay a foundation for the intelligent design and breeding of crops with high/low Cd accumulation.
Collapse
|