1
|
Delle Cave D, Mangini M, Tramontano C, De Stefano L, Corona M, Rea I, De Luca AC, Lonardo E. Hybrid Biosilica Nanoparticles for in-vivo Targeted Inhibition of Colorectal Cancer Growth and Label-Free Imaging. Int J Nanomedicine 2024; 19:12079-12098. [PMID: 39583322 PMCID: PMC11585298 DOI: 10.2147/ijn.s480168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
Background Metastasis-initiating cells are key players in progression, resistance, and relapse of colorectal cancer (CRC), by leveraging the regulatory relationship between Transforming Growth Factor-beta (TGF-β) signaling and anti-L1 cell adhesion molecule (L1CAM). Methods This study introduces a novel strategy for CRC targeted therapy and imaging based on the use of a hybrid nanosystem made of gold nanoparticles-covered porous biosilica further modified with the (L1CAM) antibody. Results The nanosystem intracellularly delivers galunisertib (LY), a TGF-β inhibitor, aiming to inhibit epithelial-mesenchymal transition (EMT), a process pivotal for metastasis. Anti-L1CAM antibody-functionalized nanoparticles (NPs) target tumor-initiating cells expressing L1CAM, inhibiting cancer growth. The number of antibody molecules conjugated to the single NP is precisely quantified, revealing a high surface coverage that facilitates the tumor targeting. The therapeutic efficacy of the nanosystem is investigated in organoid-like cultures of CRC cells and in vivo mouse models, showing a significant reduction in tumor growth. The spatial distribution of NPs within CRC tumors from mice is investigated using a label-free optical approach based on Raman micro-spectroscopy. Conclusion This research highlights the multifunctional capabilities of engineered biosilica NPs, which offer new insights in targeted CRC therapy and imaging, improving patient outcomes and paving the way for personalized therapies.
Collapse
Affiliation(s)
- Donatella Delle Cave
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Maria Mangini
- National Research Council, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, Naples, 80131, Italy
| | - Chiara Tramontano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Marco Corona
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Naples, 80131, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, Naples, 80131, Italy
| | - Enza Lonardo
- National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy
| |
Collapse
|
2
|
Kang S, Woo Y, Seo Y, Yoo D, Kwon D, Park H, Lee SD, Yoo HY, Lee T. A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System. Pharmaceutics 2024; 16:1171. [PMID: 39339207 PMCID: PMC11434644 DOI: 10.3390/pharmaceutics16091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, biosilica derived from diatoms has attracted attention in various biomedical fields, including drug delivery systems (DDS), due to its uniform porous nano-pattern, hierarchical structure, and abundant silanol functional groups. Importantly, the structural characteristics of diatom biosilica improve the solubility of poorly soluble substances and enable sustained release of loaded drugs. Additionally, diatom biosilica predominantly comprises SiO2, has high biocompatibility, and can easily hybridize with other DDS platforms, including hydrogels and cationic DDS, owing to its strong negative charge and abundant silanol groups. This review explores the potential applications of various diatom biosilica-based DDS in various biomedical fields, with a particular focus on hybrid DDS utilizing them.
Collapse
Affiliation(s)
- Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daeryul Kwon
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sang Deuk Lee
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Ran Y, Hu J, Chen Y, Rao Z, Zhao J, Xu Z, Ming J. Morusin-Cu(II)-indocyanine green nanoassembly ignites mitochondrial dysfunction for chemo-photothermal tumor therapy. J Colloid Interface Sci 2024; 662:760-773. [PMID: 38377695 DOI: 10.1016/j.jcis.2024.02.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Nanoscale drug delivery systems derived from natural bioactive materials accelerate the innovation and evolution of cancer treatment modalities. Morusin (Mor) is a prenylated flavonoid compound with high cancer chemoprevention activity, however, the poor water solubility, low active pharmaceutical ingredient (API) loading content, and instability compromise its bioavailability and therapeutic effectiveness. Herein, a full-API carrier-free nanoparticle is developed based on the self-assembly of indocyanine green (ICG), copper ions (Cu2+) and Mor, termed as IMCNs, via coordination-driven and π-π stacking for synergistic tumor therapy. The IMCNs exhibits a desirable loading content of Mor (58.7 %) and pH/glutathione (GSH)-responsive motif. Moreover, the photothermal stability and photo-heat conversion efficiency (42.8 %) of IMCNs are improved after coordination with Cu2+ and help to achieve photothermal therapy. Afterward, the released Cu2+ depletes intracellular overexpressed GSH and mediates Fenton-like reactions, and further synergizes with ICG at high temperatures to expand oxidative damage. Furthermore, the released Mor elicits cytoplasmic vacuolation, expedites mitochondrial dysfunction, and exerts chemo-photothermal therapy after being combined with ICG to suppress the migration of residual live tumor cells. In vivo experiments demonstrate that IMCNs under laser irradiation could excellently inhibit tumor growth (89.6 %) through the multi-modal therapeutic performance of self-enhanced chemotherapy/coordinated-drugs/ photothermal therapy (PTT), presenting a great potential for cancer therapy.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Junfeng Hu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
4
|
Ahmed AM, Saad I, Rafea MA, Abukhadra MR. Synergetic and advanced isotherm investigation for the enhancement influence of zeolitization and β-cyclodextrin hybridization on the retention efficiency of U(vi) ions by diatomite. RSC Adv 2024; 14:8752-8768. [PMID: 38495997 PMCID: PMC10938553 DOI: 10.1039/d3ra08709c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 03/19/2024] Open
Abstract
In synergetic investigations, the adsorption effectiveness of diatomite-based zeolitic structure (ZD) as well as its β-cyclodextrin (CD) hybrids (CD/ZD) towards uranium ions (U(vi)) was evaluated to examine the influence of the transformation procedures. The retention behaviors and mechanistic processes have been demonstrated through analyzing the steric and energetic factors employing the modern equilibrium approach (a monolayer model with a single energy level). After the saturation phase, the uptake characteristics of U(vi) were dramatically improved to 297.5 mg g-1 after the CD blending procedure versus ZD (262.3 mg g-1) or 127.8 mg g-1. The steric analysis indicated a notable increase in binding site levels after the zeolitization steps (Nm = 85.7 mg g-1) as well as CD implementation (Nm = 91.2 mg g-1). This finding clarifies the reported improvement in the ability of CD/ZD to effectively retain the U(vi) ions. Furthermore, every single active site of the CD/ZD material has the capacity to adsorb around four ions, which are aligned according to a vertical pattern. The energetic aspects, specifically Gaussian energy (<8 kJ mol-1) along with retention energy (<40 kJ mol-1), validate the regulated influences of the physical mechanistic processes. The physical adsorption of U(vi) seems to depend on various intermolecular forces, such as van der Waals forces, in conjunction with zeolitic ion exchanging pathways (0.6-25 kJ mol-1). The thermodynamic assets have been evaluated to confirm the exothermic together with spontaneous adsorption U(vi) by ZD and its blend with CD (CD/ZD).
Collapse
Affiliation(s)
- Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Islam Saad
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| | - M Abdel Rafea
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef City Egypt
| |
Collapse
|
5
|
Miranda B, Dello Iacono S, Rea I, Borbone F, De Stefano L. Effect of the molecular weight on the sensing mechanism in polyethylene glycol diacrylate/gold nanocomposite optical transducers. Heliyon 2024; 10:e25593. [PMID: 38356564 PMCID: PMC10864976 DOI: 10.1016/j.heliyon.2024.e25593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The combination of plasmonic nanoparticles and hydrogels results in nanocomposite materials with unprecedented properties that give rise to powerful platforms for optical biosensing. Herein, we propose a physicochemical characterization of plasmonic hydrogel nanocomposites made of polyethylene glycol diacrylate (PEGDA) hydrogels with increasing molecular weights (700-10000 Da) and gold nanoparticles (AuNPs, ∼60 nm). The swelling capability, mechanical properties, and thermal responses of the nanocomposites are analyzed and the combination with the resulting optical properties is elucidated. The different optomechanical properties of the proposed nanocomposites result in different transduction mechanisms, which can be exploited for several biosensing applications. A correlation between the polymer molecular weight, the effective refractive index of the material, and the optical response is found by combining experimental data and numerical simulations. In particular, the localized surface plasmon resonance (LSPR) position of the AuNPs was found to follow a parabolic profile as a function of the monomer molecular weight (MW), while its absorbance intensity was found as inversely proportional to the monomer MW. Low MW PEGDA nanocomposites were found to be responsive to refractive index variations for small molecule sensing. Differently, high MW PEGDA nanocomposites exhibited absorbance intensity increase/decrease as a function of the hydrophobicity/hydrophilicity of the targeted small molecule. The proposed optomechanical model paves the way to the design of innovative platforms for real-life applications, such as wearable sensing, point-of-care testing, and food monitoring via smart packaging devices.
Collapse
Affiliation(s)
- Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055, Portici, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, Naples, 80126, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| |
Collapse
|
6
|
Alfassam HE, Ashraf MT, Al Othman SI, Al-Waili MA, Allam AA, Abukhadra MR. Insight into the Physiochemical and Cytotoxic Properties of β-cyclodextrin Hybridized Zeoilitic Diatomite as an Enhanced Carrier of Oxaliplatin Drug: Loading, Release, and Equilibrium Studies. J Inorg Organomet Polym Mater 2023; 33:2984-3001. [DOI: 10.1007/s10904-023-02731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 01/04/2025]
|
7
|
Abukhadra MR, Saad I, Al Othman SI, Alfassam HE, Allam AA. Insight into the synergetic, steric and energetic properties of zeolitization and cellulose fiber functionalization of diatomite during the adsorption of Cd(ii): advanced equilibrium studies. RSC Adv 2023; 13:23601-23618. [PMID: 37555098 PMCID: PMC10405048 DOI: 10.1039/d3ra03939k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
The adsorption potentiality of zeolitized diatomite (ZD) frustules and their cellulose hybridized (C/ZD) product for Cd(ii) ions was assessed in synergetic studies to investigate the impact of the modification processes. The adsorption properties were illustrated based on the steric and energetic parameters of the applied advanced equilibrium modeling (monolayer model of one energy). The cellulose hybridization process increased the adsorption properties of Cd(ii) significantly to 229.4 mg g-1 as compared to ZD (180.8 mg g-1) and raw diatomite (DA) (127.8 mg g-1) during the saturation state. The steric investigation suggested a notable increase in the quantities of the active sites after the zeolitization (Nm = 62.37 mg g-1) and cellulose functionalization (Nm = 98.46 mg g-1), which illustrates enhancement in the Cd(ii) uptake capacity of C/ZD. Moreover, each active site of C/ZD can absorb about 4 ions of Cd(ii) ZD, which occur in a vertical orientation. The energetic studies, including Gaussian energy (<8 kJ mol-1) and retention energy (<8 kJ mol-1), demonstrate the physical uptake of Cd(ii), which might involve cooperating van der Waals forces (4-10 kJ mol-1), hydrophobic bonds (5 kJ mol-1), dipole forces (2-29 kJ mol-1), and hydrogen bonding (<30 kJ mol-1) in addition to zeolitic ion exchange mechanisms (0.6-25 kJ mol-1). The behaviors and values of entropy, internal energy, and free enthalpy as the assessed thermodynamic functions validate the exothermic and spontaneous properties of the Cd(ii) retention by ZD and the C/ZD composite.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef Egypt
| | - Islam Saad
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
8
|
Carvalho T, Bártolo R, Pedro SN, Valente BFA, Pinto RJB, Vilela C, Shahbazi MA, Santos HA, Freire CSR. Injectable Nanocomposite Hydrogels of Gelatin-Hyaluronic Acid Reinforced with Hybrid Lysozyme Nanofibrils-Gold Nanoparticles for the Regeneration of Damaged Myocardium. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37200222 DOI: 10.1021/acsami.3c03874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Biopolymeric injectable hydrogels are promising biomaterials for myocardial regeneration applications. Besides being biocompatible, they adjust themselves, perfectly fitting the surrounding tissue. However, due to their nature, biopolymeric hydrogels usually lack desirable functionalities, such as antioxidant activity and electrical conductivity, and in some cases, mechanical performance. Protein nanofibrils (NFs), such as lysozyme nanofibrils (LNFs), are proteic nanostructures with excellent mechanical performance and antioxidant activity, which can work as nanotemplates to produce metallic nanoparticles. Here, gold nanoparticles (AuNPs) were synthesized in situ in the presence of LNFs, and the obtained hybrid AuNPs@LNFs were incorporated into gelatin-hyaluronic acid (HA) hydrogels for myocardial regeneration applications. The resulting nanocomposite hydrogels showed improved rheological properties, mechanical resilience, antioxidant activity, and electrical conductivity, especially for the hydrogels containing AuNPs@LNFs. The swelling and bioresorbability ratios of these hydrogels are favorably adjusted at lower pH levels, which correspond to the ones in inflamed tissues. These improvements were observed while maintaining important properties, namely, injectability, biocompatibility, and the ability to release a model drug. Additionally, the presence of AuNPs allowed the hydrogels to be monitorable through computer tomography. This work demonstrates that LNFs and AuNPs@LNFs are excellent functional nanostructures to formulate injectable biopolymeric nanocomposite hydrogels for myocardial regeneration applications.
Collapse
Affiliation(s)
- Tiago Carvalho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Raquel Bártolo
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sónia N Pedro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno F A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Tramontano C, De Stefano L, Rea I. Diatom-Based Nanomedicine for Colorectal Cancer Treatment: New Approaches for Old Challenges. Mar Drugs 2023; 21:md21050266. [PMID: 37233460 DOI: 10.3390/md21050266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer is among the most prevalent and lethal cancers globally. To address this emergency, countries have developed diffuse screening programs and innovative surgical techniques with a consequent decrease in mortality rates in non-metastatic patients. However, five years after diagnosis, metastatic CRC is still characterized by less than 20% survival. Most patients with metastatic CRC cannot be surgically treated. For them, the only option is treatment with conventional chemotherapies, which cause harmful side effects in normal tissues. In this context, nanomedicine can help traditional medicine overcome its limits. Diatomite nanoparticles (DNPs) are innovative nano-based drug delivery systems derived from the powder of diatom shells. Diatomite is a porous biosilica largely found in many areas of the world and approved by the Food and Drug Administration (FDA) for pharmaceutical and animal feed formulations. Diatomite nanoparticles with a size between 300 and 400 nm were shown to be biocompatible nanocarriers capable of delivering chemotherapeutic agents against specific targets while reducing off-target effects. This review discusses the treatment of colorectal cancer with conventional methods, highlighting the drawbacks of standard medicine and exploring innovative options based on the use of diatomite-based drug delivery systems. Three targeted treatments are considered: anti-angiogenetic drugs, antimetastatic drugs, and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Chiara Tramontano
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Luca De Stefano
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Ilaria Rea
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
10
|
Alfassam HE, Ashraf MT, Al Othman SI, Al-Waili MA, Allam AA, Abukhadra MR. Synthesis and characterization of cellulose functionalized zeolitic diatomite as an enhanced carrier of oxaliplatin drug; loading, release, and cytotoxicity. Int J Biol Macromol 2023; 235:123825. [PMID: 36828091 DOI: 10.1016/j.ijbiomac.2023.123825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Natural diatomite frustules (D) were incorporated in zeolitization and cellulose functionalization processes to obtain zeolitized diatomite (ZD) and cellulose fibrous/zeolitized diatomite composite (CF/ZD). The modified products were assessed as potential carriers of oxaliplatin drug (OXPL) with enhanced properties. The prepared ZD (112.5 mg/g) and CF/ZD (268.3 mg/g) structures exhibit significantly enhanced encapsulation capacities as compared to raw diatomite (65.9 mg/g). The occurred encapsulation reactions follow the classic Pseudo-first order kinetic (R2 > 0.93) and traditional Langmuir isotherm (R2 = 0.99). The estimated effective encapsulation site density of CF/ZD is 104.8 mg/g which is a notably higher value than ZD (44.6 mg/g) and D (28.4 mg/g). Moreover, each effective site can be occupied with up to 3 molecules of OXPL molecules in vertical forms involving multi-molecular mechanisms. The encapsulation energy (<40 KJ/mol) suggested the predominant effects of the physical mechanisms during the encapsulation reactions. The release profiles of ZD as well as CF/ZD exhibit slow and controlled properties for about 100 h either at pH 5.5 or at pH 7.4. The release kinetic studies involving the obtained diffusion exponent values (>0.45) suggested non-Fickian transport and complex erosion/diffusion release mechanism. These structures exhibit enhanced cytotoxic effects on the HCT-116 cancer cell lines (D (18.78 % cell viability), ZD (9.76 % cell viability), and CF/ZD (3.16 % cell viability).
Collapse
Affiliation(s)
- Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Menna-Tullah Ashraf
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt; Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Maha A Al-Waili
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt.
| |
Collapse
|
11
|
Terracciano M, Fontana F, Falanga AP, D'Errico S, Torrieri G, Greco F, Tramontano C, Rea I, Piccialli G, De Stefano L, Oliviero G, Santos HA, Borbone N. Development of Surface Chemical Strategies for Synthesizing Redox-Responsive Diatomite Nanoparticles as a Green Platform for On-Demand Intracellular Release of an Antisense Peptide Nucleic Acid Anticancer Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204732. [PMID: 36089668 DOI: 10.1002/smll.202204732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Redox-responsive silica drug delivery systems are synthesized by aeco-friendly diatomite source to achieve on-demand release of peptide nucleic acid (PNA) in tumor reducing microenvironment, aiming to inhibit the immune checkpoint programmed cell death 1 receptor/programmed cell death receptor ligand 1 (PD-1/PD-L1) in cancer cells. The nanoparticles (NPs) are coated with polyethylene glycol chains as gatekeepers to improve their physicochemical properties and control drug release through the cleavable disulfide bonds (S-S) in a reductive environment. This study describes different chemical conditions to achieve the highest NPs' surface functionalization yield, exploring both multistep and one-pot chemical functionalization strategies. The best formulation is used for covalent PNA conjugation via the S-S bond reaching a loading degree of 306 ± 25 µg PNA mg-1 DNPs . These systems are used for in vitro studies to evaluate the kinetic release, biocompatibility, cellular uptake, and activity on different cancer cells expressing high levels of PD-L1. The obtained results prove the safety of the NPs up to 200 µg mL-1 and their advantage for controlling and enhancing the PNA intracellular release as well as antitumor activity. Moreover, the downregulation of PD-L1 observed only with MDA-MB-231 cancer cells paves the way for targeted immunotherapy.
Collapse
Affiliation(s)
- Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, Naples, 80131, Italy
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, Naples, 80131, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, Naples, 80131, Italy
| | - Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, Naples, 80131, Italy
| | - Chiara Tramontano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, Naples, 80131, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, via P. Castellino 111, Naples, 80131, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, Naples, 80131, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, via P. Castellino 111, Naples, 80131, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via S. Pansini 5, Naples, 80131, Italy
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 9, Helsinki, FI-00014, Finland
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, Naples, 80131, Italy
| |
Collapse
|
12
|
Lew B, George M, Blair S, Zhu Z, Liang Z, Ludwig J, Kim CY, Kim KK, Gruev V, Choi H. Protease-activated indocyanine green nanoprobes for intraoperative NIR fluorescence imaging of primary tumors. NANOSCALE ADVANCES 2022; 4:4041-4050. [PMID: 36285222 PMCID: PMC9514568 DOI: 10.1039/d2na00276k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/25/2022] [Indexed: 05/17/2023]
Abstract
Tumor-targeted fluorescent probes in the near-infrared spectrum can provide invaluable information about the location and extent of primary and metastatic tumors during intraoperative procedures to ensure no residual tumors are left in the patient's body. Even though the first fluorescence-guided surgery was performed more than 50 years ago, it is still not accepted as a standard of care in part due to the lack of efficient and non-toxic targeted probes approved by regulatory agencies around the world. Herein, we report protease-activated cationic gelatin nanoparticles encapsulating indocyanine green (ICG) for the detection of primary breast tumors in murine models with high tumor-to-background ratios. Upon intravenous administration, these nanoprobes remain optically silent due to the energy resonance transfer among the bound ICG molecules. As the nanoprobes extravasate and are exposed to the acidic tumor microenvironment, their positive surface charges increase, facilitating cellular uptake. The internalized nanoprobes are activated upon proteolytic degradation of gelatin to allow high contrast between the tumor and normal tissue. Since both gelatin and ICG are FDA-approved for intravenous administration, this activatable nanoprobe can lead to quick clinical adoption and improve the treatment of patients undergoing image-guided cancer surgery.
Collapse
Affiliation(s)
- Benjamin Lew
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Mebin George
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Steven Blair
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Zhongmin Zhu
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Zuodong Liang
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Jamie Ludwig
- Division of Animal Resources, University of Illinois Urbana IL 61801 USA
| | - Celeste Y Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Kyekyoon Kevin Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
- Department of Bioengineering, University of Illinois Urbana IL 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana IL 61801 USA
| | - Viktor Gruev
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana IL 61801 USA
- Carle Illinois College of Medicine, University of Illinois Urbana IL 61801 USA
| | - Hyungsoo Choi
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| |
Collapse
|
13
|
Roychoudhury P, Bose R, Dąbek P, Witkowski A. Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal-A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6597. [PMID: 36233939 PMCID: PMC9572592 DOI: 10.3390/ma15196597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 05/30/2023]
Abstract
The siliceous exoskeletal shells of diatoms, commonly known as frustules, have drawn attention because of their photoluminescence property and high volume to surface area. Photonic biosilica can also enhance the plasmonic sensitivity of nanoparticles. Because of this, researchers have studied the effectiveness of various metal particles after combining with biosilica. Additionally, naturally occurring diatom-based biosilica has excellent adsorption and absorption capabilities, which have already been exploited for wastewater treatment. Moreover, the nanoporous, ultra-hydrophilic frustules can easily accumulate more molecules on their surfaces. As a consequence, it becomes easier to conjugate noble metals with silica, making them more stable and effective. The main focus of this review is to agglomerate the utility of biocompatible diatom frustules, which is a no-cost natural resource of biosilica, in metal modification and removal.
Collapse
Affiliation(s)
- Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Rahul Bose
- Department of Botany, University of Calcutta, Ballygunge Circular Road 35, Kolkata 700019, India
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| |
Collapse
|
14
|
De Tommasi E, De Luca AC. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:3080-3101. [PMID: 35774319 PMCID: PMC9203090 DOI: 10.1364/boe.457483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/01/2023]
Abstract
Several living organisms are able to synthesize complex nanostructures provided with peculiar physical and chemical properties by means of finely-tuned, genetically controlled biomineralization processes. Frustules, in particular, are micro- and nano-structured silica shells produced by ubiquitous diatom microalgae, whose optical properties have been recently exploited in photonics, solar energy harvesting, and biosensing. Metallization of diatom biosilica, both in the shape of intact frustules or diatomite particles, can trigger plasmonic effects that in turn can find application in high-sensitive detection platforms, allowing to obtain effective nanosensors at low cost and on a large scale. The aim of the present review article is to provide a wide, complete overview on the main metallization techniques applied to diatom biosilica and on the principal applications of diatom-based plasmonic devices mainly but not exclusively in the fields of biochemical sensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Endocrinology and Experimental Oncology "Gaetano Salvatore", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| |
Collapse
|
15
|
Abstract
Current advances in the fabrication of smart nanomaterials and nanostructured surfaces find wide usage in the biomedical field. In this context, nanosensors based on localized surface plasmon resonance exhibit unprecedented optical features that can be exploited to reduce the costs, analytic times, and need for expensive lab equipment. Moreover, they are promising for the design of nanoplatforms with multiple functionalities (e.g., multiplexed detection) with large integration within microelectronics and microfluidics. In this review, we summarize the most recent design strategies, fabrication approaches, and bio-applications of plasmonic nanoparticles (NPs) arranged in colloids, nanoarrays, and nanocomposites. After a brief introduction on the physical principles behind plasmonic nanostructures both as inherent optical detection and as nanoantennas for external signal amplification, we classify the proposed examples in colloid-based devices when plasmonic NPs operate in solution, nanoarrays when they are assembled or fabricated on rigid substrates, and nanocomposites when they are assembled within flexible/polymeric substrates. We highlight the main biomedical applications of the proposed devices and offer a general overview of the main strengths and limitations of the currently available plasmonic nanodevices.
Collapse
|