1
|
Wu X, Liang J, Meng L, Wang B, Liu B, Jin Y. Towards novel small-molecule inhibitors blocking PD-1/PD-L1 pathway: From explainable machine learning models to molecular dynamics simulation. Int J Biol Macromol 2024; 282:136325. [PMID: 39414203 DOI: 10.1016/j.ijbiomac.2024.136325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Molecular design of small-molecule inhibitors targeting programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway has been recognized as an active research area by the clinical success of cancer immunotherapy. In recent years, using machine learning (ML) methods to accelerate drug design have been confirmed. However, the black box character of ML methods makes model interpretation and ligands optimization obscured. Herein, five explainable ML models were constructed by integrating five ML models with the SHAP method, where these ML models were pretrained with >4000 molecules and their R2 ranged from 0.835 to 0.86 on test set. Subsequently, the explainable ML models were employed to identify the relationship between fragments and bio-activity of a small molecule inhibitor BMS-1166, leading to the modification of BMS-1166 into 60 novel compounds. After consensus docking and ADMET test, 3 small molecules (C27, C52 and C54) with better docking scores and lower toxicity than BMS-1166 were screened out further. Finally, the improved binding affinity of C27, C52 to the PD-L1 dimer was validated by the MD simulation. Overall, this work proposed an efficient protocol on the basis of explainable ML models for designing small-molecule inhibitors targeting PD-1/PD-L1 pathway in a rational way.
Collapse
Affiliation(s)
- Xiaoyan Wu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China
| | - Jingyi Liang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China
| | - Luming Meng
- College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China
| | - Bingfeng Wang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China.
| | - Boping Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China.
| | - Yulong Jin
- College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Guo Y, Tong J, Liang J, Shi K, Song X, Guo Z, Liu B, Xu J. Molecular insight into binding affinities and blockade effects of selected flavonoid compounds on the PD-1/PD-L1 pathway. RSC Adv 2024; 14:25908-25917. [PMID: 39157581 PMCID: PMC11328830 DOI: 10.1039/d4ra03877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
This study investigated the binding mechanisms of the flavonoids apigenin (Api), kaempferol (Kmp), and quercetin (Que) to the PD-L1 dimer using a combination of molecular modeling and experimental techniques. The binding free energy results demonstrated that the flavonoids could tightly bind to the PD-L1 dimer, with the binding abilities following the trend Que > Kmp > Api. Key residues Ile54, Tyr56, Met115, Ala121, and Tyr123 were identified as important for binding. The flavonoids primarily bind to the C-, F-, and G-sheet domains. The spontaneous formation of the complex systems was mainly driven by hydrophobic forces. Dynamic cross-correlation matrix and secondary structure analyses further indicated that the studied flavonoids could stably interact with the binding sites. ELISA results showed that the flavonoids could effectively block PD-1/PD-L1 interactions, although the inhibitory activity of Api was weaker. Therefore, flavonols might be more effective inhibitors compared to flavones. The findings of this study are expected to contribute to the development of novel flavonoids targeting the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Yan Guo
- College of Food Science, Shanxi Normal University Taiyuan 030031 China
| | - Jinchang Tong
- College of Food Science, Shanxi Normal University Taiyuan 030031 China
| | - Jianhuai Liang
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University Guangzhou 510630 China
| | - Kaixin Shi
- College of Food Science, Shanxi Normal University Taiyuan 030031 China
| | - Xinyue Song
- College of Food Science, Shanxi Normal University Taiyuan 030031 China
| | - Zichao Guo
- College of Food Science, Shanxi Normal University Taiyuan 030031 China
| | - Boping Liu
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University Guangzhou 510630 China
| | - Jianguo Xu
- College of Food Science, Shanxi Normal University Taiyuan 030031 China
| |
Collapse
|
3
|
Salminen A. The role of the immunosuppressive PD-1/PD-L1 checkpoint pathway in the aging process and age-related diseases. J Mol Med (Berl) 2024; 102:733-750. [PMID: 38600305 PMCID: PMC11106179 DOI: 10.1007/s00109-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The accumulation of senescent cells within tissues is a hallmark of the aging process. Senescent cells are also commonly present in many age-related diseases and in the cancer microenvironment. The escape of abnormal cells from immune surveillance indicates that there is some defect in the function of cytotoxic immune cells, e.g., CD8+ T cells and natural killer (NK) cells. Recent studies have revealed that the expression of programmed death-ligand 1 (PD-L1) protein is abundantly increased in senescent cells. An increase in the amount of PD-L1 protein protects senescent cells from clearance by the PD-1 checkpoint receptor in cytotoxic immune cells. In fact, the activation of the PD-1 receptor suppresses the cytotoxic properties of CD8+ T and NK cells, promoting a state of immunosenescence. The inhibitory PD-1/PD-L1 checkpoint pathway acts in cooperation with immunosuppressive cells; for example, activation of PD-1 receptor can enhance the differentiation of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 macrophages, whereas the cytokines secreted by immunosuppressive cells stimulate the expression of the immunosuppressive PD-L1 protein. Interestingly, many signaling pathways known to promote cellular senescence and the aging process are crucial stimulators of the expression of PD-L1 protein, e.g., epigenetic regulation, inflammatory mediators, mTOR-related signaling, cGAS-STING pathway, and AhR signaling. It seems that the inhibitory PD-1/PD-L1 immune checkpoint axis has a crucial role in the accumulation of senescent cells and thus it promotes the aging process in tissues. Thus, the blockade of the PD-1/PD-L1 checkpoint signaling might be a potential anti-aging senolytic therapy. KEY MESSAGES: Senescent cells accumulate within tissues during aging and age-related diseases. Senescent cells are able to escape immune surveillance by cytotoxic immune cells. Expression of programmed death-ligand 1 (PD-L1) markedly increases in senescent cells. Age-related signaling stimulates the expression of PD-L1 protein in senescent cells. Inhibitory PD-1/PD-L1 checkpoint pathway suppresses clearance of senescent cells.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
4
|
Mu Y, Meng Q, Fan X, Xi S, Xiong Z, Wang Y, Huang Y, Liu Z. Identification of the inhibition mechanism of carbonic anhydrase II by fructooligosaccharides. Front Mol Biosci 2024; 11:1398603. [PMID: 38863966 PMCID: PMC11165268 DOI: 10.3389/fmolb.2024.1398603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Polygonatum sibiricum (P. sibiricum), recognized as a precious nourishing Chinese traditional medicine, exhibits the pharmacological effect of anti-aging. In this work, we proposed a novel mechanism underlying this effect related to the less studied bioactive compounds fructooligosaccharides in P. sibiricum (PFOS) to identify the inhibition effect of the small glycosyl molecules on the age-related zinc metalloprotease carbonic anhydrase II (CA II). Molecular docking and molecular dynamics simulation were used to investigate the structural and energetic properties of the complex systems consisting of the CA II enzyme and two possible structures of PFOS molecules (PFOS-A and PFOS-B). The binding affinity of PFOS-A (-7.27 ± 1.02 kcal/mol) and PFOS-B (-8.09 ± 1.75 kcal/mol) shows the spontaneity of the binding process and the stability of the combination in the solvent. Based on the residue energy decomposition and nonbonded interactions analysis, the C-, D- and G-sheet fragments of the CA II were found to be crucial in binding process. Van der Waals interactions form on the hydrophobic surface of CAII mainly with 131PHE and 135VAL, while hydrogen bonds form on the hydrophilic surface mainly with 67ASN and 92GLN. The binding of PFOS results in the blocking of the zinc ions pocket and then inhibiting its catalytic activity, the stability of which has been further demonstrated by free energy landscape. These findings provide evidence of the effective inhibition of PFOS to CA II enzyme, which leads to a novel direction for exploring the mechanism of traditional Chinese medicine focused on small molecule fructooligosaccharides.
Collapse
Affiliation(s)
- Yue Mu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Xinyi Fan
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Shuyun Xi
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Zhongli Xiong
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Yihua Wang
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Yanling Huang
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Xu J, Kong Y, Zhu P, Du M, Liang X, Tong Y, Li X, Dong C. Progress in small-molecule inhibitors targeting PD-L1. RSC Med Chem 2024; 15:1161-1175. [PMID: 38665838 PMCID: PMC11042164 DOI: 10.1039/d3md00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/29/2024] [Indexed: 04/28/2024] Open
Abstract
PD-L1 is a transmembrane protein overexpressed by tumor cells. It binds to PD-1 on the surface of T-cells, suppresses T-cell activity and hinders the immune response against cancer. Clinically, several monoclonal antibodies targeting PD-1/PD-L1 have achieved significant success in cancer immunotherapy. Nevertheless, their disadvantages, such as unchecked immune responses, high cost and long half-life, stimulated pharmacologists to develop small-molecule inhibitors targeting PD-1/PD-L1. After a batch of excellent inhibitors with a biphenyl core structure were firstly reported by BMS, more and more researchers focused on small-molecule inhibitors targeting PD-L1 rather than PD-1. Numerous small-molecule inhibitors were extensively designed and synthesized in the past few years. In this paper, the structural characteristics of PD-L1 and complexes of PD-L1 with its inhibitors are elaborated and small molecule inhibitors developed in the last decade are summarized as well. This paper aims to provide insights into further designing and synthesis of small molecule inhibitors targeting PD-L1.
Collapse
Affiliation(s)
- Jindan Xu
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Yuanfang Kong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Pengbo Zhu
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Mingyan Du
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Xuan Liang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Yan Tong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
| | - Xiaofei Li
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Chunhong Dong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| |
Collapse
|
6
|
Xu X, Luo S, Zhao X, Tang B, Zhang E, Liu J, Duan L. Computational analysis of PD-L1 dimerization mechanism induced by small molecules and potential dynamical properties. Int J Biol Macromol 2024; 265:130921. [PMID: 38492688 DOI: 10.1016/j.ijbiomac.2024.130921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The design of small molecule inhibitors that target the programmed death ligand-1 (PD-L1) is a forefront issue in immune checkpoint blocking therapy. Small-molecule inhibitors have been shown to exert therapeutic effects by inducing dimerization of the PD-L1 protein, however, the specific mechanisms underlying this dimerization process remain largely unexplored. Furthermore, there is a notable lack of comparative studies examining the binding modes of structurally diverse inhibitors. In view of the research gaps, this work employed molecular dynamics simulations to meticulously examine the interactions between two distinct types of inhibitors and PD-L1 in both monomeric and dimeric forms, and predicted the dimerization mechanism. The results revealed that inhibitors initially bind to a PD-L1 monomer, subsequently attracting another monomer to form a dimer. Notably, symmetric inhibitors observed superior binding efficiency compared to other inhibitors. Key residues, including Ile54, Tyr56, Met115 and Tyr123 played a leading role in binding. Structurally, symmetric inhibitors were capable of thoroughly engaging the binding pocket, promoting a more symmetrical formation of PD-L1 dimers. Furthermore, symmetric inhibitors formed more extensive hydrophobic interactions with protein residues. The insights garnered from this research are expected to significantly contribute to the rational design and optimization of small molecule inhibitors targeting PD-L1.
Collapse
Affiliation(s)
- Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
7
|
Li D, Cao D, Sun Y, Cui Y, Zhang Y, Jiang J, Cao X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front Immunol 2024; 15:1331641. [PMID: 38348027 PMCID: PMC10859531 DOI: 10.3389/fimmu.2024.1331641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Cancer, a disease that modern medicine has not fully understood and conquered, with its high incidence and mortality, deprives countless patients of health and even life. According to global cancer statistics, there were an estimated 19.3 million new cancer cases and nearly 10 million cancer deaths in 2020, with the age-standardized incidence and mortality rates of 201.0 and 100.7 per 100,000, respectively. Although remarkable advancements have been made in therapeutic strategies recently, the overall prognosis of cancer patients remains not optimistic. Consequently, there are still many severe challenges to be faced and difficult problems to be solved in cancer therapy today. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from tea leaves, has received much attention for its antitumor effects. Accumulating investigations have confirmed that EGCG can inhibit tumorigenesis and progression by triggering apoptosis, suppressing proliferation, invasion, and migration, altering tumor epigenetic modification, and overcoming chemotherapy resistance. Nevertheless, its regulatory roles and biomolecular mechanisms in the immune microenvironment, metabolic microenvironment, and immunotherapy remain obscure. In this article, we summarized the most recent updates about the effects of EGCG on tumor microenvironment (TME), metabolic reprogramming, and anti-cancer immunotherapy. The results demonstrated EGCG can promote the anti-cancer immune response of cytotoxic lymphocytes and dendritic cells (DCs), attenuate the immunosuppression of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and inhibit the tumor-promoting functions of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and various stromal cells including cancer-associated fibroblasts (CAFs), endothelial cells (ECs), stellate cells, and mesenchymal stem/stromal cells (MSCs). Additionally, EGCG can suppress multiple metabolic reprogramming pathways, including glucose uptake, aerobic glycolysis, glutamine metabolism, fatty acid anabolism, and nucleotide synthesis. Finally, EGCG, as an immunomodulator and immune checkpoint blockade, can enhance immunotherapeutic efficacy and may be a promising candidate for antitumor immunotherapy. In conclusion, EGCG plays versatile regulatory roles in TME and metabolic reprogramming, which provides novel insights and combined therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Guo Y, Guo Y, Guo Z, Liu B, Xu J. Effect of Fragment 1 on the Binding of Epigallocatechin Gallate to the PD-L1 Dimer Explored by Molecular Dynamics. Molecules 2023; 28:7881. [PMID: 38067610 PMCID: PMC10708077 DOI: 10.3390/molecules28237881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Blocking the interaction between programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) by directly targeting the PD-L1 dimer has emerged as a hot topic in the field of cancer immunotherapy. Epigallocatechin gallate (EGCG), a natural product, has been demonstrated binding to the PD-L1 dimer in our previous study, but has a weaker binding capacity, moreover, EGCG is located at the end of the binding pocket of the PD-L1 dimer. The inhibitor fragment 1 (FRA) lies at the other end. So, we proposed that the introduction of FRA might be able to improve the binding ability. To illuminate this issue, molecular dynamics (MD) simulation was performed in the present study. Binding free energy calculations show that the binding affinity is significantly increased by 17 kcal/mol upon the introduction of FRA. It may be due to the energy contributions of emerging key residues ATyr56, AMet115, BTyr123, AIle54 and the enhanced contributions of initial key residues ATyr123 and BVal68. Binding mode and non-bonded interaction results indicate that FRA_EGCG (EGCG in combination with FRA) binds to the C-, F- and G-sheet of the PD-L1 dimer. Importantly, the introduction of FRA mainly strengthened the nonpolar interactions. The free energy landscape and secondary structure results further show that FRA_EGCG can interact with the PD-L1 dimer more stably. These data demonstrated here provide the theoretical basis for screening two or more natural products with additive inhibitory effect on this pathway and therefore exerting more effective anticancer immunity.
Collapse
Affiliation(s)
- Yan Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Yilin Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Zichao Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Boping Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China
| | - Jianguo Xu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| |
Collapse
|
9
|
Naing S, Sandech N, Maiuthed A, Chongruchiroj S, Pratuangdejkul J, Lomarat P. Garcinia mangostana L. Pericarp Extract and Its Active Compound α-Mangostin as Potential Inhibitors of Immune Checkpoint Programmed Death Ligand-1. Molecules 2023; 28:6991. [PMID: 37836835 PMCID: PMC10574194 DOI: 10.3390/molecules28196991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
α-Mangostin, a major xanthone found in mangosteen (Garcinia mangostana L., Family Clusiaceae) pericarp, has been shown to exhibit anticancer effects through multiple mechanisms of action. However, its effects on immune checkpoint programmed death ligand-1 (PD-L1) have not been studied. This study investigated the effects of mangosteen pericarp extract and its active compound α-mangostin on PD-L1 by in vitro and in silico analyses. HPLC analysis showed that α-mangostin contained about 30% w/w of crude ethanol extract of mangosteen pericarp. In vitro experiments in MDA-MB-231 triple-negative breast cancer cells showed that α-mangostin and the ethanol extract significantly inhibit PD-L1 expression when treated for 72 h with 10 µM or 10 µg/mL, respectively, and partially inhibit glycosylation of PD-L1 when compared to untreated controls. In silico analysis revealed that α-mangostin effectively binds inside PD-L1 dimer pockets and that the complex was stable throughout the 100 ns simulation, suggesting that α-mangostin stabilized the dimer form that could potentially lead to degradation of PD-L1. The ADMET prediction showed that α-mangostin is lipophilic and has high plasma protein binding, suggesting its greater distribution to tissues and its ability to penetrate adipose tissue such as breast cancer. These findings suggest that α-mangostin-rich mangosteen pericarp extract could potentially be applied as a functional ingredient for cancer chemoprevention.
Collapse
Affiliation(s)
- Sandar Naing
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Nichawadee Sandech
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (N.S.); (A.M.)
| | - Arnatchai Maiuthed
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (N.S.); (A.M.)
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (S.C.); (J.P.)
| | - Jaturong Pratuangdejkul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (S.C.); (J.P.)
| | - Pattamapan Lomarat
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
10
|
Liu R, Liu B, Tian L, Wu X, Li X, Cai D, Jiang X, Sun J, Jin Y, Bai W. Induction of reproductive injury by bisphenol A and the protective effects of cyanidin-3-O-glucoside and protocatechuic acid in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163615. [PMID: 37105472 DOI: 10.1016/j.scitotenv.2023.163615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Bisphenol A (BPA) has attracted growing attention as a well-known environmental pollutant due to its high risk of male reproductive toxicity. In this study, transcriptomics profiling combined with metabolomic techniques was applied to explore the intervention effects of BPA-induced male reproductive toxicity. We demonstrated that cyanidin-3-O-glucoside (C3G) and its main metabolite protocatechuic acid (PCA) significantly increased testosterone and luteinizing hormone (LH) levels in the serum of rats, and improved sperm quality. Furthermore, we identified and screened differentially expressed genes (DEGs) and metabolites (DMs) that functionally enriched in the steroidogenesis-related pathways. Next, the validated results found that C3G and PCA significantly up-regulated the gene expressions of Star, Cyp11a1, Cyp17a1, Cyp19a1, Cyp7a1, Hsd3b1, Hsd3b2, Hsd17b3, Scrab1, and Ass1 in testicular. In Leydig cells, C3G and PCA dramatically alleviated apoptosis, ROS accumulation, and cell cycle arrest caused by BPA. In addition, molecular docking and simulation results implied that C3G and PCA competitively with BPA bind to the estrogen receptors α and β (ERα and ERβ) and shared common key amino acids. The main interaction modes between small molecules and estrogen receptors included π-π stacking, salt bridges, hydrogen bonds, and hydrophobic interactions. Therefore, our study sheds light on C3G and PCA supplementation can protect male reproduction from BPA-induced injury.
Collapse
Affiliation(s)
- Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China; College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Boping Liu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xiaoyan Wu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yulong Jin
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
11
|
Wu X, Wang N, Liang J, Wang B, Jin Y, Liu B, Yang Y. Is the Triggering of PD-L1 Dimerization a Potential Mechanism for Food-Derived Small Molecules in Cancer Immunotherapy? A Study by Molecular Dynamics. Int J Mol Sci 2023; 24:ijms24021413. [PMID: 36674929 PMCID: PMC9864258 DOI: 10.3390/ijms24021413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Using small molecules to inhibit the PD-1/PD-L1 pathway is an important approach in cancer immunotherapy. Natural compounds such as capsaicin, zucapsaicin, 6-gingerol and curcumin have been proposed to have anticancer immunologic functions by downregulating the PD-L1 expression. PD-L1 dimerization promoted by small molecules was recently reported to be a potential mechanism to inhibit the PD-1/PD-L1 pathway. To clarify the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and molecular dynamics simulations were performed. The results evidenced that these compounds could inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. Binding free energy calculations showed that capsaicin, zucapsaicin, 6-gingerol and curcumin have strong binding ability with the PD-L1 dimer, where the affinities of them follow the trend of zucapsaicin > capsaicin > 6-gingerol ≈ curcumin. Analysis by residue energy decomposition, contact numbers and nonbonded interactions revealed that these compounds have a tight interaction with the C-sheet, F-sheet and G-sheet fragments of the PD-L1 dimer, which were also involved in the interactions with PD-1. Moreover, non-polar interactions between these compounds and the key residues Ile54, Tyr56, Met115 and Ala121 play a key role in stabilizing the protein−ligand complexes in solution, in which the 4′-hydroxy-3′-methoxyphenyl group and the carbonyl group of zucapsaicin, capsaicin, 6-ginger and curcumin were significant for the complexation of small molecules with the PD-L1 dimer. The conformational variations of these complexes were further analyzed by free energy landscape (FEL) and principal component analysis (PCA) and showed that these small molecules could make the structure of dimers more stable. This work provides a mechanism insight for food-derived small molecules blocking the PD-1/PD-L1 pathway via directly targeting the PD-L1 dimerization and offers theoretical guidance to discover more effective small molecular drugs in cancer immunotherapy.
Collapse
|
12
|
Yang Q, Liu T, Zheng H, Zhou Z, Huang Y, Jia H, Fu S, Zhang X, Zhang H, Liu Y, Chen X, Shan W. A nanoformulation for immunosuppression reversal and broad-spectrum self-amplifying antitumor ferroptosis-immunotherapy. Biomaterials 2023; 292:121936. [PMID: 36502663 DOI: 10.1016/j.biomaterials.2022.121936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The efficacy of immunotherapy combined with other therapeutic modalities in the management of cancer has been extensively studied. However, no effective strategy to improve the antitumor effects of immunotherapy at the tumor site has been developed. In this study, we describe a nanoformulation (CP) that integrates ferroptosis-inducing cannabinoid nanoparticles with immunostimulatory Poly(I:C) to enhance antitumor immune responses by activating ferroptosis-immunotherapy pathways. The results indicated that CP nanoformulation effectively induced ferroptosis, cellular immunogenic death, and anti-tumor immune responses which initiate T cell responses leading to the inhibition of established tumors. In addition, CP nanoformulations reversed the tumor immunosuppressive microenvironment and promoted tumor ferroptosis. These results indicated that the self-amplifying nanoformulation may be an effective strategy for broad-spectrum cancer immunotherapy.
Collapse
Affiliation(s)
- Qunfang Yang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Haiping Zheng
- School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Zechen Zhou
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Yan Huang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Honglin Jia
- Department of Dermatology, Army Special Medical Center, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Shixiang Fu
- Teaching and Research Office of Field Internal Medicine, Department of Battlefield First Aid and Medicine, The NCO School of Army Medical University, Shijiazhuang, 050085, PR China
| | - Xuan Zhang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Haigang Zhang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ya Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Xiaohong Chen
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China.
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
13
|
Liang F, Shi Y, Shi J, Cao W. Exploring the binding mechanism of pumpkin seed protein and apigenin: Spectroscopic analysis, molecular docking and molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Sun Z, Yin S, Zhao C, Fan L, Hu H. Inhibition of PD-L1-mediated tumor-promoting signaling is involved in the anti-cancer activity of β-tocotrienol. Biochem Biophys Res Commun 2022; 617:33-40. [PMID: 35689840 DOI: 10.1016/j.bbrc.2022.05.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022]
Abstract
Programmed death-ligand 1 (PD-L1), a critical immune checkpoint ligand, is commonly overexpressed on the surface of many tumor types including lung and prostate cancer. PD-L1 can exert cancer-promoting activity through either suppressing T cell-mediated immune response or activating tumor-intrinsic signaling. Here, we demonstrated that β-tocotrienol (β-T3), an isomer of vitamin E, effectively inhibited PD-L1 expression both in vitro and in vivo, which was mechanistically associated inactivating JAK2/STAT3 pathway. Down-regulating PD-L1 expression by β-T3 led to enhanced immune response and inactivation of PD-L1-induced tumor-intrinsic signaling, which in turn contributed to its anticancer activity. This study uncovered a novel mechanism involved in the anticancer effect of β-T3.
Collapse
Affiliation(s)
- Zhenou Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No.2 Yunmingyuan West Road, Haidian District, Beijing, 100094, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|