1
|
Hu T, Duan R, Gao H, Bai X, Huang X, Yan X, An L, Ma Y, Chen R, Hong S, Gan M. Exosomes from myoblasts induced by hypoxic preconditioning improved ventricular conduction by increasing Cx43 expression in hypothermia ischemia reperfusion hearts. Cytotechnology 2024; 76:533-546. [PMID: 39188650 PMCID: PMC11344748 DOI: 10.1007/s10616-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/25/2024] [Indexed: 08/28/2024] Open
Abstract
Myocardial ischemia-reperfusion arrhythmia after cardiac surgery is common and seriously affects quality of life. Remote ischemic preconditioning can reduce the myocardial damage caused by severe ischemia. However, the underlying mechanism is not well understood. This study aimed to investigate the effects of exosomes derived from C2C12 mouse myoblasts after hypoxic preconditioning (HP) on ventricular conduction in hypothermic ischemia-reperfusion hearts. Myocardial ischemia-reperfusion model rats were established using the Langendorff cardiac perfusion system. Exosomes derived from normoxic (ExoA) and hypoxia-preconditioned (ExoB) C2C12 cells were injected into the jugular vein of the model rats. The time to heartbeat restoration, arrhythmia type and duration, and heart rate were recorded after myocardial ischemia-reperfusion. Conduction velocity on the surface of left ventricle was measured using a microelectrode array after 30 min of balanced perfusion, 15 min of reperfusion, and 30 min of reperfusion. Immunohistochemistry and western blotting were performed to determine the distribution and relative expression of connexin 43 (Cx43). ExoB contained more exosomes than ExoA, showing that HP stimulated the release of exosomes. The IR + ExoB group showed faster recovery of ventricular myocardial activity, a lower arrhythmia score, faster conduction velocity, and better electrical conductivity than the IR group. ExoB increased the expression of Cx43 and reduced its lateralization in the ventricular muscle. Our study showed that exosomes induced by hypoxic preconditioning can improve ventricular myocardial conduction and reperfusion arrhythmia in isolated hearts after hypothermic ischemia-reperfusion. Graphical abstract
Collapse
Affiliation(s)
- Tingju Hu
- Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550001 Guizhou China
| | - Rui Duan
- Department of Pain, The Second People’s Hospital of Guiyang, Guiyang, 550081 Guizhou China
| | - Hong Gao
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004 Guizhou China
| | - Xue Bai
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Xiang Huang
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Xu Yan
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Li An
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Yanyan Ma
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Rui Chen
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550001 Guizhou China
| | - Sen Hong
- Department of Pain, The Second People’s Hospital of Guiyang, Guiyang, 550081 Guizhou China
| | - Mi Gan
- College of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou China
| |
Collapse
|
2
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
3
|
Xu J, Qi Y, Tang Y, Zhang W, Zhang Q, Xu L, Ding Z, Liu T. Improvement of restless leg syndrome in maintenance hemodialysis patients with limb ischemic preconditioning: a single-center randomized controlled clinical trial. Ren Fail 2023; 45:2283589. [PMID: 38047534 PMCID: PMC11001338 DOI: 10.1080/0886022x.2023.2283589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
OBJECTIVE This study evaluated the efficacy and safety of limb ischemic preconditioning (LIPC) in treating restless leg syndrome (RLS) in maintenance hemodialysis (MHD) patients. METHODS A total number of 45 patients participated in the study. They were randomly divided into LIPC group and control group. The LIPC was performed by inflating the limb ischemic preconditioning training device in the patient's thigh to 200 mmHg to create transient ischemia, whereas control group inflated the device to 20 mmHg. International Restless Legs Syndrome (IRLS), Clinical Global Impression Scale (CGI-S), and Medical Outputs Study Sleep Scale were employed to evaluate LIPC effectiveness. The primary endpoint was the 'rate of clinical improvement in RLS severity', defined as the percentage of patients who had an IRLS score decrease of ≥5 points in each group. RESULTS After intervention, the rate of clinical improvement in RLS severity was 56.5% in the LIPC group and 13.6% in the control group (13 (56.5) vs 3 (13.6), p = 0.003). In addition, the LIPC group's IRLS, CGI-S scores, the sleep disturbance and somnolence scores showed a significant downward trend compared to the control group (-5.5 ± 5.3 vs - 1.0 ± 3.8, p = 0.002; -1.7 ± 1.2 vs - 0.5 ± 1.4, p = 0.003; -15.5 ± 17.8 vs 3.7 ± 12.0, p < 0.001; -9.9 ± 18.8 vs - 2.4 ± 8.6, p = 0.003). During the study, there were no serious adverse event in any of the patients. CONCLUSIONS LIPC could be employed to effectively and safely alleviate the RLS symptoms in MHD patients.
Collapse
Affiliation(s)
- Juntian Xu
- Department of Nephrology, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Graduate College, Dalian Medical University, Dalian, China
| | - Yuan Qi
- Department of Nephrology, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Graduate College, Dalian Medical University, Dalian, China
| | - Yushang Tang
- Department of Nephrology, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Wanfen Zhang
- Department of Nephrology, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Qiaoyang Zhang
- Department of Psychology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Linfang Xu
- Hemodialysis Center, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Zhongqin Ding
- Hemodialysis Center, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
4
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
5
|
Farkašová F, Kindernay L, Ferko M, Rajtík T, Szobi A, Ravingerová T. Age-Dependent Effects of Remote Preconditioning in Hypertensive Rat Hearts are Associated With Activation of RISK Signaling. Physiol Res 2023; 72:S11-S22. [PMID: 37294114 DOI: 10.33549/physiolres.935019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) represents one of the forms of innate cardioprotection. While being effective in animal models, its application in humans has not been always beneficial, which might be attributed to the presence of various comorbidities, such as hypertension, or being related to the confounding factors, such as patients' sex and age. RIPC has been shown to mediate its cardioprotective effects through the activation of Reperfusion Injury Salvage Kinase (RISK) pathway in healthy animals, however, scarce evidence supports this effect of RIPC in the hearts of spontaneously hypertensive (SHR) rats, in particular, in relationship with aging. The study aimed to investigate the effectiveness of RIPC in male SHR rats of different age and to evaluate the role of RISK pathway in the effect of RIPC on cardiac ischemic tolerance. RIPC was performed using three cycles of inflation/deflation of the pressure cuff placed on the hind limb of anesthetized rats aged three, five and eight months. Subsequently, hearts were excised, Langendorff-perfused and exposed to 30-min global ischemia and 2-h reperfusion. Infarct-sparing and antiarrhythmic effects of RIPC were observed only in three and five months-old animals but not in eight months-old rats. Beneficial effects of RIPC were associated with increased activity of RISK and decreased apoptotic signaling only in three and five months-old animals. In conclusion, RIPC showed cardioprotective effects in SHR rats that were partially age-dependent and might be attributed to the differences in the activation of RISK pathway and various aspects of ischemia/reperfusion injury in aging animals.
Collapse
Affiliation(s)
- Farkašová Farkašová
- Institute for Heart Research, Centre of Experimental Medicine Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
6
|
Kindernay L, Ferenczyová K, Farkašova V, Barteková M, Bernátová I, Ravingerová T. Effects of Iron Nanoparticles Administration on Ischemia/Reperfusion Injury in Isolated Hearts of Male Wistar Rats. Physiol Res 2023; 72:S61-S72. [PMID: 37294119 DOI: 10.33549/physiolres.935112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Iron is an essential mineral participating in numerous biological processes in the organism under physiological conditions. However, it may be also involved in the pathological mechanisms activated in various cardiovascular diseases including myocardial ischemia/reperfusion (I/R) injury, due to its involvement in reactive oxygen species (ROS) production. Furthermore, iron has been reported to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". On the other hand, iron may be also involved in the adaptive processes of ischemic preconditioning (IPC). This study aimed to elucidate whether small amounts of iron may modify the cardiac response to I/R in isolated perfused rat hearts and their protection by IPC. Pretreatment of the hearts with iron nanoparticles 15 min prior to sustained ischemia (iron preconditioning, Fe-PC) did not attenuate post-I/R contractile dysfunction. Recovery of left ventricular developed pressure (LVDP) was significantly improved only in the group with combined pretreatment with iron and IPC. Similarly, the rates of contraction and relaxation [+/-(dP/dt)max] were almost completely restored in the group preconditioned with a combination of iron and IPC but not with iron alone. In addition, the severity of reperfusion arrhythmias was reduced only in the iron+IPC group. No changes in protein levels of "survival" kinases of the RISK pathway (Reperfusion Injury Salvage Kinase) were found except for reduced caspase 3 levels in both preconditioned groups. The results indicate that a failure to precondition rat hearts with iron may be associated with the absent upregulation of RISK proteins and the pro-ferroptotic effect manifested by reduced glutathione peroxidase 4 (GPX4) levels. However, combination with IPC suppressed the negative effects of iron resulting in cardioprotection.
Collapse
Affiliation(s)
- L Kindernay
- Institute for Heart Research, Centre of Experimental Medicine Slovak Academy of Sciences, Bratislava, Slovak republic.
| | | | | | | | | | | |
Collapse
|
7
|
Cheng XF, He ST, Zhong GQ, Meng JJ, Wang M, Bi Q, Tu RH. Exosomal HSP90 induced by remote ischemic preconditioning alleviates myocardial ischemia/reperfusion injury by inhibiting complement activation and inflammation. BMC Cardiovasc Disord 2023; 23:58. [PMID: 36726083 PMCID: PMC9890892 DOI: 10.1186/s12872-023-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND/AIMS The activation of the complement system and subsequent inflammatory responses are important features of myocardial ischemia/reperfusion (I/R) injury. Exosomes are nanoscale extracellular vesicles that play a significant role in remote ischemic preconditioning (RIPC) cardioprotection. The present study aimed to test whether RIPC-induced plasma exosomes (RIPC-Exo) exert protective effects on myocardial I/R injury by inhibiting complement activation and inflammation and whether exosomal heat shock protein 90 (HSP90) mediates these effects. METHODS Rat hearts underwent 30 min of coronary ligation followed by 2 h of reperfusion. Plasma exosomes were isolated from RIPC rats and injected into the infarcted myocardium immediately after ligation. Sixty rats were randomly divided into Sham, I/R, I/R + RIPC-Exo (50 µg/µl), and RIPC-Exo + GA (geldanamycin, 1 mg/kg, administration 30 min before ligation) groups. Cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB), infarct size, the expression of HSP90, complement component (C)3, C5a, c-Jun N-terminal kinase (JNK), interleukin (IL)-1β, tumor necrosis factor (TNF)-alpha and intercellular adhesion molecule -1 (ICAM-1) were assessed. RESULTS RIPC-Exo treatment significantly reduced I/R-induced cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB) and infarct size. These beneficial effects were accompanied by decreased C3 and C5a expression, decreased inflammatory factor levels (IL-1β, TNF-α, and ICAM-1), decreased JNK and Bax, and increased Bcl-2 expression. Meanwhile, the expression of HSP90 in the exosomes from rat plasma increased significantly after RIPC. However, treatment with HSP90 inhibitor GA significantly reversed the cardioprotection of RIPC-Exo, as well as activated complement component, JNK signalling and inflammation, indicating that HSP90 in exosomes isolated from the RIPC was important in mediating the cardioprotective effects during I/R. CONCLUSION Exosomal HSP90 induced by RIPC played a significant role in cardioprotection against I/R injury, and its function was in part linked to the inhibition of the complement system, JNK signalling and local and systemic inflammation, ultimately alleviating I/R-induced myocardial injury and apoptosis by the upregulation of Bcl-2 expression and the downregulation of proapoptotic Bax.
Collapse
Affiliation(s)
- Xiao-Fang Cheng
- grid.256607.00000 0004 1798 2653Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Shi-Tao He
- grid.256607.00000 0004 1798 2653Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Guo-Qiang Zhong
- grid.256607.00000 0004 1798 2653Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China ,Guang Xi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, 530021 Guangxi China ,Guang Xi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021 Guangxi China
| | - Jian-Jun Meng
- grid.256607.00000 0004 1798 2653Geriatric Healthcare Center, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Min Wang
- grid.256607.00000 0004 1798 2653Department of Geriatric Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi China
| | - Qi Bi
- grid.256607.00000 0004 1798 2653Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Rong-Hui Tu
- Guang Xi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, 530021, Guangxi, China. .,Guang Xi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, China. .,Department of Geriatric Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Chen L, Weng Y, Qing A, Li J, Yang P, Ye L, Zhu T. Protective Effect of Remote Ischemic Preconditioning against Myocardial Ischemia-Reperfusion Injury in Rats and Mice: A Systematic Review and Meta-Analysis. Rev Cardiovasc Med 2022; 23:413. [PMID: 39076668 PMCID: PMC11270448 DOI: 10.31083/j.rcm2312413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 07/31/2024] Open
Abstract
Background Remote ischemic preconditioning (RIPC) has cardioprotective effects. This study was designed to evaluate the effectiveness and potential influencing factors of RIPC for myocardial ischemia-reperfusion injury (MIRI) in rats and mice. Methods The PubMed, Web of Science, Embase, and Cochrane Library databases were searched to identify animal model studies that explored the effect of RIPC on MIRI. The primary outcome was myocardial infarct size, and secondary outcomes included serum cardiac markers, vital signs, hemodynamic parameters, and TUNEL-positive cells. Quality was assessed using SYRCLE's Risk of Bias Tool. Results This systematic review and meta-analysis included 713 male animals from 37 studies. RIPC significantly protected against MIRI in small animal models by reducing infarct size, decreasing serum myocardial marker levels and cell death, and improving cardiac function. Subgroup analysis indicated that RIPC duration and sites influence the protective effect of RIPC on MIRI. Meta-regression suggested that study type and staining method might be sources of heterogeneity. The funnel plot, Egger's test, and Begg's test suggested the existence of publication bias, but results of the sensitivity analysis and nonparametric trim-and-fill method showed that the overall effect of RIPC on MIRI infarct size was robust. Conclusions RIPC significantly protected against MIRI in small animal models by reducing infarct size, decreasing serum myocardial markers and limiting cell death, and improving cardiac function. RIPC duration and site influence the protective effect of RIPC on MIRI, which contributes in reducing confounding factors and determines the best approach for human studies.
Collapse
Affiliation(s)
- Lu Chen
- Department of Anesthesiology, West China Hospital, Sichuan University,
610041 Chengdu, Sichuan, China
| | - Yan Weng
- Department of Anesthesiology, The People's Hospital of Jianyang, 641400
Jianyang, Sichuan, China
| | - Ailing Qing
- Department of Anesthesiology, West China School of Public Health and West
China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Jun Li
- Department of Pain Management, West China Hospital, Sichuan University,
610041 Chengdu, Sichuan, China
| | - Pingliang Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu
Medical College, 610500 Chengdu, Sichuan, China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University,
610041 Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University,
610041 Chengdu, Sichuan, China
| |
Collapse
|