1
|
Kamel AA, Nassar AY, Meligy FY, Omar YA, Nassar GAY, Ezzat GM. Acetylated oligopeptide and N-acetylcysteine protect against iron overload-induced dentate gyrus hippocampal degeneration through upregulation of Nestin and Nrf2/HO-1 and downregulation of MMP-9/TIMP-1 and GFAP. Cell Biochem Funct 2024; 42:e3958. [PMID: 38396357 DOI: 10.1002/cbf.3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.
Collapse
Affiliation(s)
- Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yomna A Omar
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A Y Nassar
- Metabolic and Genetic Disorders Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Shafique B, Murtaza MA, Hafiz I, Ameer K, Basharat S, Mohamed Ahmed IA. Proteolysis and therapeutic potential of bioactive peptides derived from Cheddar cheese. Food Sci Nutr 2023; 11:4948-4963. [PMID: 37701240 PMCID: PMC10494659 DOI: 10.1002/fsn3.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
Cheddar cheese-derived bioactive peptides are considered a potential component of functional foods. A positive impact of bioactive peptides on diet-related chronic, non-communicable diseases, like obesity, cardiovascular diseases, and diabetes, has been observed. Bioactive peptides possess multifunctional therapeutic potentials, including antimicrobial, immunomodulatory, antioxidant, enzyme inhibitory effects, anti-thrombotic, and phyto-pathological activities against various toxic compounds. Peptides can regulate human immune, gastrointestinal, hormonal, and neurological responses, which play an integral role in the deterrence and treatment of certain diseases like cancer, osteoporosis, hypertension, and other health disorders, as described in the present review. This review summarizes the categories of the Cheddar cheese-derived bioactive peptides, their general characteristics, physiological functions, and possible applications in healthcare.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Iram Hafiz
- Institute of ChemistryUniversity of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Shahnai Basharat
- The University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
| |
Collapse
|
3
|
Augustyniak A, Gottardi D, Giordani B, Gaffey J, Mc Mahon H. Dairy bioactives and functional ingredients with skin health benefits. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
4
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
5
|
Mora L, Toldrá F. Special Issue: Food Bioactive Peptides. Int J Mol Sci 2022; 23:ijms232415985. [PMID: 36555626 PMCID: PMC9785551 DOI: 10.3390/ijms232415985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
This Special Issue of the International Journal of Molecular Sciences is focused on bioactive peptides in foods or hydrolyzates of food by-products, the methods for the extraction and purification of bioactive peptides, their structural and functional characterization, and the mechanisms of action that regulate their activity and support the reported health benefits [...].
Collapse
|
6
|
Łepecka A, Okoń A, Szymański P, Zielińska D, Kajak-Siemaszko K, Jaworska D, Neffe-Skocińska K, Sionek B, Trząskowska M, Kołożyn-Krajewska D, Dolatowski ZJ. The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow's Milk. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031097. [PMID: 35164362 PMCID: PMC8838525 DOI: 10.3390/molecules27031097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/04/2022]
Abstract
The aim of this study was to use local LAB cultures for the production of organic acid-rennet cheeses from unpasteurized cow’s milk. Under industrial conditions, three types of cheese were produced, i.e., traditionally with acid whey (AW), with starter culture L. brevis B1, or with starter culture L. plantarum Os2. Strains were previously isolated from traditional Polish cheeses. Chemical composition, physico-chemical, microbiological, and sensory studies during 2 months of storage were carried out. As a result of this research, it was found that the basic composition was typical for semi-hard, partially skimmed cheeses. Mainly saturated fatty acids were detected. The cheeses were rich in omega-3, -6, and -9 fatty acids and conjugated linoleic acid (CLA), and were characterized by good lipid quality indices (LQI). All of the cheeses were characterized by a high number of lactic acid bacteria, with Enterobacteriaceae, yeast, molds, and staphylococci contaminants, which is typical microbiota for unpasteurized milk products. Water activity, pH, and total acidity were typical. A lower oxidation-reduction potential (ORP) of cheeses with the addition of strains and stability of the products during storage were observed. The B1 and Os2 cheeses were lighter, less yellow, had a more intense milk and creamy aroma, were softer, moister, and more elastic than AW cheese. The research results indicate the possibility of using environmental LAB strains in the production of high-quality acid-rennet cheeses, but special attention should be paid to the production process due to the microbiological quality of the cheeses.
Collapse
Affiliation(s)
- Anna Łepecka
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food, Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (A.O.); (P.S.); (Z.J.D.)
- Correspondence: ; Tel.: +48-225097025
| | - Anna Okoń
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food, Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (A.O.); (P.S.); (Z.J.D.)
| | - Piotr Szymański
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food, Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (A.O.); (P.S.); (Z.J.D.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Katarzyna Kajak-Siemaszko
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Danuta Jaworska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Zbigniew J. Dolatowski
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food, Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (A.O.); (P.S.); (Z.J.D.)
| |
Collapse
|