1
|
Gurhan H, Barnes F. Frequency-Dependent Antioxidant Responses in HT-1080 Human Fibrosarcoma Cells Exposed to Weak Radio Frequency Fields. Antioxidants (Basel) 2024; 13:1237. [PMID: 39456490 PMCID: PMC11504554 DOI: 10.3390/antiox13101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the complex relationship between radio frequency (RF) exposure and cancer cells, focusing on the HT-1080 human fibrosarcoma cell line. We investigated the modulation of reactive oxygen species (ROS) and key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase, and glutathione (GSH), as well as mitochondrial superoxide levels and cell viability. Exposure to RF fields in the 2-5 MHz range at very weak intensities (20 nT) over 4 days resulted in distinct, frequency-specific cellular effects. Significant increases in SOD and GSH levels were observed at 4 and 4.5 MHz, accompanied by reduced mitochondrial superoxide levels and enhanced cell viability, suggesting improved mitochondrial function. In contrast, lower frequencies like 2.5 MHz induced oxidative stress, evidenced by GSH depletion and increased mitochondrial superoxide levels. The findings demonstrate that cancer cells exhibit frequency-specific sensitivity to RF fields even at intensities significantly below current safety standards, highlighting the need to reassess exposure limits. Additionally, our analysis of the radical pair mechanism (RPM) offers deeper insight into RF-induced cellular responses. The modulation of ROS and antioxidant enzyme activities is significant for cancer treatment and has broader implications for age-related diseases, where oxidative stress is a central factor in cellular degeneration. The findings propose that RF fields may serve as a therapeutic tool to selectively modulate oxidative stress and mitochondrial function in cancer cells, with antioxidants playing a key role in mitigating potential adverse effects.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| | - Frank Barnes
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Guo C, Wang Q, Shuai P, Wang T, Wu W, Li Y, Huang S, Yu J, Yi L. Radiation and male reproductive system: Damage and protection. CHEMOSPHERE 2024; 357:142030. [PMID: 38626814 DOI: 10.1016/j.chemosphere.2024.142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Male fertility has been declining in recent decades, and a growing body of research points to environmental and lifestyle factors as the cause. The widespread use of radiation technology may result in more people affected by male infertility, as it is well established that radiation can cause reproductive impairment in men. This article provides a review of radiation-induced damage to male reproduction, and the effects of damage mechanisms and pharmacotherapy. It is hoped that this review will contribute to the understanding of the effects of radiation on male reproduction, and provide information for research into drugs that can protect the reproductive health of males.
Collapse
Affiliation(s)
- Caimao Guo
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenyu Wu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Li
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqi Huang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Franco-Obregón A. Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure. Bioengineering (Basel) 2023; 10:1176. [PMID: 37892906 PMCID: PMC10604793 DOI: 10.3390/bioengineering10101176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Mitohormesis is a process whereby mitochondrial stress responses, mediated by reactive oxygen species (ROS), act cumulatively to either instill survival adaptations (low ROS levels) or to produce cell damage (high ROS levels). The mitohormetic nature of extremely low-frequency electromagnetic field (ELF-EMF) exposure thus makes it susceptible to extraneous influences that also impinge on mitochondrial ROS production and contribute to the collective response. Consequently, magnetic stimulation paradigms are prone to experimental variability depending on diverse circumstances. The failure, or inability, to control for these factors has contributed to the existing discrepancies between published reports and in the interpretations made from the results generated therein. Confounding environmental factors include ambient magnetic fields, temperature, the mechanical environment, and the conventional use of aminoglycoside antibiotics. Biological factors include cell type and seeding density as well as the developmental, inflammatory, or senescence statuses of cells that depend on the prior handling of the experimental sample. Technological aspects include magnetic field directionality, uniformity, amplitude, and duration of exposure. All these factors will exhibit manifestations at the level of ROS production that will culminate as a unified cellular response in conjunction with magnetic exposure. Fortunately, many of these factors are under the control of the experimenter. This review will focus on delineating areas requiring technical and biological harmonization to assist in the designing of therapeutic strategies with more clearly defined and better predicted outcomes and to improve the mechanistic interpretation of the generated data, rather than on precise applications. This review will also explore the underlying mechanistic similarities between magnetic field exposure and other forms of biophysical stimuli, such as mechanical stimuli, that mutually induce elevations in intracellular calcium and ROS as a prerequisite for biological outcome. These forms of biophysical stimuli commonly invoke the activity of transient receptor potential cation channel classes, such as TRPC1.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; ; Tel.: +65-6777-8427 or +65-6601-6143
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
4
|
Gurhan H, Barnes F. Impact of weak radiofrequency and static magnetic fields on key signaling molecules, intracellular pH, membrane potential, and cell growth in HT-1080 fibrosarcoma cells. Sci Rep 2023; 13:14223. [PMID: 37648766 PMCID: PMC10469173 DOI: 10.1038/s41598-023-41167-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
There are substantial concerns that extended exposures to weak radiofrequency (RF) fields can lead to adverse health effects. In this study, HT-1080 fibrosarcoma cells were simultaneously exposed to a static magnetic flux density between 10 [Formula: see text] and 300 [Formula: see text] and RF magnetic fields with amplitudes ranging from 1 nT to 1.5 μT in the frequency range from 1.8 to 7.2 MHz for four days. Cell growth rates, intracellular pH, hydrogen peroxide, peroxynitrite, membrane potential and mitochondrial calcium were measured. Results were dependent on carrier frequency and the magnitude of the RF magnetic field, modulation frequencies and the background static magnetic field (SMF). Iron sulphur (Fe-S) clusters are essential for the generation of reactive oxygen species and reactive nitrogen species (ROS and RNS). We believe the observed changes are associated with hyperfine couplings between the chemically active electrons and nuclear spins. Controlling external magnetic fields may have important clinical implications on aging, cancer, arthritis, and Alzheimer's.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, 425 UCB #1B55, Boulder, CO, 80309, USA.
| | - Frank Barnes
- Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, 425 UCB #1B55, Boulder, CO, 80309, USA
| |
Collapse
|
5
|
Elexpuru-Zabaleta M, Lazzarini R, Tartaglione MF, Piva F, Ciarapica V, Marinelli Busilacchi E, Poloni A, Valentino M, Santarelli L, Bracci M. A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure. Mol Biol Rep 2023; 50:1005-1017. [PMID: 36378418 PMCID: PMC9889515 DOI: 10.1007/s11033-022-08069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The exposure of breast cancer to extremely low frequency magnetic fields (ELF-MFs) results in various biological responses. Some studies have suggested a possible cancer-enhancing effect, while others showed a possible therapeutic role. This study investigated the effects of in vitro exposure to 50 Hz ELF-MF for up to 24 h on the viability and cellular response of MDA-MB-231 and MCF-7 breast cancer cell lines and MCF-10A breast cell line. METHODS AND RESULTS The breast cell lines were exposed to 50 Hz ELF-MF at flux densities of 0.1 mT and 1.0 mT and were examined 96 h after the beginning of ELF-MF exposure. The duration of 50 Hz ELF-MF exposure influenced the cell viability and proliferation of both the tumor and nontumorigenic breast cell lines. In particular, short-term exposure (4-8 h, 0.1 mT and 1.0 mT) led to an increase in viability in breast cancer cells, while long and high exposure (24 h, 1.0 mT) led to a decrease in viability and proliferation in all cell lines. Cancer and normal breast cells exhibited different responses to ELF-MF. Mitochondrial membrane potential and reactive oxygen species (ROS) production were altered after ELF-MF exposure, suggesting that the mitochondria are a probable target of ELF-MF in breast cells. CONCLUSIONS The viability of breast cells in vitro is influenced by ELF-MF exposure at magnetic flux densities compatible with the limits for the general population and for workplace exposures. The effects are apparent after 96 h and are related to the ELF-MF exposure time.
Collapse
Affiliation(s)
- Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011, Santander, Spain
| | - Raffaella Lazzarini
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Maria Fiorella Tartaglione
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Veronica Ciarapica
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Section of Hematology, Department of Clinical and Molecular Science, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Antonella Poloni
- Section of Hematology, Department of Clinical and Molecular Science, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Matteo Valentino
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Lory Santarelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy.
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy.
| |
Collapse
|
6
|
Xenodochidis C, Staneva D, Vasileva B, Draganova M, Miloshev G, Georgieva M, Zagorchev P. The Photobiomodulation of MAO-A Affects the Contractile Activity of Smooth Muscle Gastric Tissues. Biomolecules 2022; 13:biom13010032. [PMID: 36671417 PMCID: PMC9855794 DOI: 10.3390/biom13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Nowadays, the utilized electromagnetic radiation (ER) in modalities such as photobiomodulation (PBM) finds broader applications in medical practice due to the promising results suggested by numerous reports. To date, the published data do not allow for the in-depth elucidation of the molecular mechanisms through which ER impacts the human organism. Furthermore, there is a total lack of evidence justifying the relation between the enzymatic activity of monoamine oxidase A (MAO-A) and the effect of 5-hydroxytryptamine (5-HT) on the spontaneous contractile activity of smooth muscle gastric tissues exposed to various light sources. We found that exposure of these tissues to lamps, emitting light with wavelengths of 254 nm and 350 nm, lasers, emitting light with 532 nm and 808 nm, and light-emitting diodes (LEDs) with ER at a wavelength of 660 nm, increased the 5-HT effect on the contractility. On the other hand, LEDs at 365 nm and 470 nm reduced it. The analysis of MAO-A enzymatic activity after exposure to the employed light emitters endorsed these findings. Furthermore, MAOA gene expression studies confirmed the possibility of its optogenetic regulation. Therefore, we concluded that the utilized emitters could alternate the functions of significant neuromediators by modulating the activity and gene transcription levels of enzymes that degrade them. Our investigations will help to disclose the selective conditions upon which PBM can effectively treat gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Laboratory of Molecular Genetics, Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dessislava Staneva
- Laboratory of Molecular Genetics, Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Draganova
- Department of Medical Biology, Medical Faculty, Medical University-Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - George Miloshev
- Laboratory of Molecular Genetics, Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-896-833-604
| | - Plamen Zagorchev
- Research Institute, Medical University-Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Department of Biophysics, Faculty of Pharmacy, Medical University-Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|