1
|
Mortaheb S, Pezeshki PS, Rezaei N. Bispecific therapeutics: a state-of-the-art review on the combination of immune checkpoint inhibition with costimulatory and non-checkpoint targeted therapy. Expert Opin Biol Ther 2024; 24:1335-1351. [PMID: 39503381 DOI: 10.1080/14712598.2024.2426636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination. BsAbs along with other bispecific platforms such as bispecific fusion proteins, nanobodies, and CAR-T cells may help to avoid development of resistance and reduce irAEs caused by on-target/off-tumor binding effects of mAbs. AREAS COVERED A literature search was performed using PubMed for English-language articles to provide a comprehensive overview of preclinical and clinical studies on bsAbs specified for both immune checkpoints and non-checkpoint molecules as a well-enhanced class of therapeutics. EXPERT OPINION Identifying suitable targets and selecting effective engineering platforms enhance the potential of bsAbs to address the challenges associated with conventional therapies such as ICIs, positioning them as a promising class of therapeutics in the landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Samin Mortaheb
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Espinar-Buitrago MS, Vazquez-Alejo E, Magro-Lopez E, Tarancon-Diez L, Leal M, Muñoz-Fernandez MA. Immune modulation via dendritic cells by the effect of Thymosin-alpha-1 on immune synapse in HCMV infection. Int Immunopharmacol 2023; 125:111103. [PMID: 38149577 DOI: 10.1016/j.intimp.2023.111103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 12/28/2023]
Abstract
Tα1 (Thymosin-alpha-1) is a thymus-derived hormone that has been demonstrated to be effective on diverse immune cell subsets. The objective of this study was to determine the in vitro immunomodulatory effect of Tα1 in human cytomegalovirus (HCMV) infection. Dendritic cells (DCs) were isolated from peripheral blood mononuclear cells (PBMCs) by negative selection and cultured in the presence or absence of Tα1. The immunophenotyping of DCs was characterised by multiparametric flow cytometry assessing CD40, CD80, TIM-3 and PDL-1 markers, as well as intracellular TNFα production. Then, autologous CD4+ or CD8+ T-Lymphocytes (TLs) isolated by negative selection from PBMCs were co-cultured with DCs previously treated with Tα1 in the presence or absence of HCMV. Intracellular TNFα, IFNγ, IL-2 production, CD40-L and PD-1 expression were assessed through immunophenotyping, and polyfunctionality in total TLs and memory subsets were evaluated. The results showed that Tα1 increased CD40, CD80, TIM-3 and TNFα intracellular production while decreasing PDL-1 expression, particularly on plasmacytoid dendritic cells (pDCs). Therefore, Tα1 modulated the production of TNFα, IFNγ and IL-2 in both total and memory subsets of CD4+ and CD8+ TLs by upregulating CD40/CD40-L and downregulating PDL-1/PD-1 expression. Our study concludes that Tα1 enhances antigen-presenting capacity of DCs, improves TLs responses to HCMV infection, and enhances the polyfunctionality of CD8+ TLs. Consequently, Tα1 could be an alternative adjuvant for use in therapeutic cell therapy for immunocompromised patients.
Collapse
Affiliation(s)
- M S Espinar-Buitrago
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - E Vazquez-Alejo
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - E Magro-Lopez
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - L Tarancon-Diez
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - M Leal
- Departamento de Medicina Interna, Hospital Viamed Santa Ángela de la Cruz, 41014 Sevilla, Spain; Hogar Residencia de la Santa Caridad, 41001 Sevilla, Spain
| | - M A Muñoz-Fernandez
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
3
|
Remy C, Pintado E, Dunlop M, Schön S, Kleinpeter P, Rozanes H, Fend L, Brandely R, Geist M, Suhner D, Winter E, Silvestre N, Huguet C, Fitzgerald P, Quéméneur E, Marchand JB. Design and selection of anti-PD-L1 single-domain antibody and tumor necrosis factor superfamily ligands for an optimal vectorization in an oncolytic virus. Front Bioeng Biotechnol 2023; 11:1247802. [PMID: 38053848 PMCID: PMC10694795 DOI: 10.3389/fbioe.2023.1247802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
Arming oncolytic viruses with transgenes encoding immunomodulators improves their therapeutic efficacy by enhancing and/or sustaining the innate and adaptive anti-tumoral immune responses. We report here the isolation, selection, and vectorization of a blocking anti-human PDL1 single-domain antibody (sdAb) isolated from PDL1-immunized alpacas. Several formats of this sdAb were vectorized into the vaccinia virus (VV) and evaluated for their programmed cell death protein 1 (PD1)/PD1 ligand (PDL1) blocking activity in the culture medium of tumor cells infected in vitro. In those conditions, VV-encoded homodimeric sdAb generated superior PDL1 blocking activity compared to a benchmark virus encoding full-length avelumab. The sdAb was further used to design simple, secreted, and small tumor necrosis factor superfamily (TNFSF) fusions with the ability to engage their cognate receptors (TNFRSF) only in the presence of PDL1-positive cells. Finally, PDL1-independent alternatives of TNFRSF agonists were also constructed by fusing different variants of surfactant protein-D (SP-D) oligomerization domains with TNFSF ectodomains. An optimal SP-D-CD40L fusion with an SP-D collagen domain reduced by 80% was identified by screening with a transfection/infection method where poxvirus transfer plasmids and vaccinia virus were successively introduced into the same cell. However, once vectorized in VV, this construct had a much lower CD40 agonist activity compared to the SP-D-CD40L construct, which is completely devoid of the collagen domain that was finally selected. This latest result highlights the importance of working with recombinant viruses early in the payload selection process. Altogether, these results bring several complementary solutions to arm oncolytic vectors with powerful immunomodulators to improve their immune-based anti-tumoral activity.
Collapse
|
4
|
Mortezaee K, Majidpoor J. Reinstating immunogenicity using bispecific anti-checkpoint/agent inhibitors. Biomed Pharmacother 2023; 162:114621. [PMID: 37004328 DOI: 10.1016/j.biopha.2023.114621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) resistance demands for acquisition of novel strategies in order to broaden the therapeutic repertoire of advanced cancers. Bispecific antibodies can be utilized as an emerging therapeutic paradigm and a step forward in cancer immunotherapy. Synchronous inhibition of programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1) or cytotoxic T lymphocyte associated antigen-4 (CTLA-4), or with other agents can expand antibody selectivity and improve therapeutic window through tightening cell-to-cell bridge (a process called immunological synapse) within tumor immune microenvironment (TIME). There is evidence of higher potency of this co-targeting approach over combined single-agent monoclonal antibodies in reinvigorating anti-tumor immune responses, retarding tumor growth, and improving patient survival. In fact, immunological synapses formed by interactions of such bispecific agents with TIME cells directly mediate cytotoxicity against tumor cells, and durable anti-tumor immune responses are predictable after application of such agents. Besides, lower adverse events are reported for bispecific antibodies compared with individual checkpoint inhibitors. These are all indicative of the importance of exploiting novel bispecific approach as a replacement for conventional combo checkpoint inhibitor therapy particularly for tumors with immunosuppressive or cold immunity. Study in this area is still continued, and in the future more will be known about the importance of this bispecific approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
5
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Li X, Du H, Zhan S, Liu W, Wang Z, Lan J, PuYang L, Wan Y, Qu Q, Wang S, Yang Y, Wang Q, Xie F. The interaction between the soluble programmed death ligand-1 (sPD-L1) and PD-1+ regulator B cells mediates immunosuppression in triple-negative breast cancer. Front Immunol 2022; 13:830606. [PMID: 35935985 PMCID: PMC9354578 DOI: 10.3389/fimmu.2022.830606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence suggests that regulatory B cells (Bregs) play important roles in inhibiting the immune response in tumors. Programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) are important molecules that maintain the balance of the immune response and immune tolerance. This study aims to evaluate the soluble form of PD-L1 and its function in inducing the differentiation of B lymphocytes, investigate the relationship between soluble PD-L1 (sPD-L1) and B-cell subsets, and explore the antitumor activity of T lymphocytes after PD-L1 blockade in coculture systems. In an effort to explore the role of sPD-L1 in human breast cancer etiology, we examined the levels of sPD-L1 and interleukin-10 (IL-10) in the serum of breast tumor patients and the proportions of B cells, PD-1+ B cells, Bregs, and PD-1+ Bregs in the peripheral blood of patients with breast tumors and assessed their relationship among sPD-L1, IL-10, and B-cell subsets. The levels of sPD-L1 and IL-10 in serum were found to be significantly higher in invasive breast cancer (IBCa) patients than in breast fibroadenoma (FIBma) patients. Meanwhile, the proportions and absolute numbers of Bregs and PD-1+ Bregs in the peripheral blood of IBCa patients were significantly higher than those of FIBma patients. Notably, they were the highest in triple-negative breast cancer (TNBC) among other subtypes of IBCa. Positive correlations of sPD-L1 and IL-10, IL-10 and PD-1+ Bregs, and also sPD-L1 and PD-1+ Bregs were observed in IBCa. We further demonstrated that sPD-L1 could induce Breg differentiation, IL-10 secretion, and IL-10 mRNA expression in a dose-dependent manner in vitro. Finally, the induction of regulatory T cells (Tregs) by Bregs was further shown to suppress the antitumor response and that PD-L1 blockade therapies could promote the apoptosis of tumor cells. Together, these results indicated that sPD-L1 could mediate the differentiation of Bregs, expand CD4+ Tregs and weaken the antitumor activity of CD4+ T cells. PD-L1/PD-1 blockade therapies might be a powerful therapeutic strategy for IBCa patients, particularly for TNBC patients with high level of PD-1+ Bregs.
Collapse
Affiliation(s)
- Xuejiao Li
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Department of Pathology, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Huan Du
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shenghua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenting Liu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangyu Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Jing Lan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Longxiang PuYang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Yuqiu Wan
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiuxia Qu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sining Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Yang Yang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Qin Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- *Correspondence: Fang Xie, ; Qin Wang,
| | - Fang Xie
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- *Correspondence: Fang Xie, ; Qin Wang,
| |
Collapse
|
7
|
Zhang X, Min S, Yang Y, Ding D, Li Q, Liu S, Tao T, Zhang M, Li B, Zhao S, Ge R, Yang F, Li Y, He X, Ma X, Wang L, Wu T, Wang T, Wang G. A TP53 Related Immune Prognostic Model for the Prediction of Clinical Outcomes and Therapeutic Responses in Lung Adenocarcinoma. Front Immunol 2022; 13:876355. [PMID: 35837383 PMCID: PMC9275777 DOI: 10.3389/fimmu.2022.876355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
TP53 is the most frequently mutated gene in lung adenocarcinoma (LUAD). The tumor immune microenvironment (TIM) is considered a vital factor that influences tumor progression and survival rate. The influence of TP53 mutation on TIM in LUAD has not been fully studied. Here we systematically investigated the relationship and potential mechanisms between TP53 mutation status and immune response in LUAD. We constructed an immune prognostic model (IPM) using immune associated genes, which were expressed differentially between the TP53 mutant and wild type LUAD patients. We discovered that TP53 mutations were significantly associated with 5 immune related biological processes. Thirty-six immune genes were expressed differentially between TP53 mutant and wild type LUAD patients. An IPM was constructed using 3 immune genes to differentiate the prognostic survival in LUAD. The high-risk LUAD group displayed significantly higher proportions of dendritic cell resting, T cell CD4 memory resting and mast cell resting, and significantly low proportions of dendritic cell activated, T cell CD4 memory activated, and mast cell activated. Moreover, IPM was found to be an independent clinical feature and can be used to predict immunotherapy responses. In summary, we constructed and validated an IPM using 3 immune related genes, which provides a better understanding of the mechanism from an immunological perspectives.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Simin Min
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Yifan Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Dushan Ding
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Qicai Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Saisai Liu
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Tao Tao
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ming Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Baiqing Li
- Department of Immunology, Bengbu Medical College, Bengbu, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Fan Yang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Yan Li
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Xiaoyu He
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
| | - Xiaoxiao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
| | - Tianyu Wu
- Department of Preventive Medicine, Bengbu Medical College, Bengbu, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- *Correspondence: Guowen Wang, ; Tao Wang,
| | - Guowen Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Guowen Wang, ; Tao Wang,
| |
Collapse
|