1
|
Zhang P, Chen SG, Wang JT, Wang JD, Chen ZH, Lin HS. A study on the impact of gargling with compound Scutellaria baicalensis Georgi on oral health and microflora changes in fixed orthodontic patients: An experimental study. Medicine (Baltimore) 2024; 103:e39397. [PMID: 39183390 PMCID: PMC11346836 DOI: 10.1097/md.0000000000039397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/12/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
PURPOSE To investigate the effect of Scutellaria baicalensis Georgi gargle on oral health and changes in oral bacteria among orthodontic patients. METHODS About 110 cases of oral fixed orthodontic patients were screened from January 2020 to June 2022 at Taizhou Hospital in Zhejiang Province. They were randomly divided into the experimental group (receiving compound S. baicalensis Georgi gargle once a day) and the control group (receiving 0.9% NS gargle once a day), with 55 cases in each group. Gingival samples were collected from both groups before and 3 months after the orthodontic surgery for bacterial culture, and the differences between the 2 groups of patients in Plaque Index (PLI), gingival bleeding index (sBl), and periodontal depth (PD) before and after the operation were compared. Results: The detection levels of PLI, PD, and sBI in the experimental group were lower than those in the control group (P < .05) 3 months after orthodontic surgery (P < .05); after orthodontic correction for 3 months, there was a significant difference in coccus, bacillus, Campylobacter, Clostridium, Helicobacter, and filamentous bacteria between the experimental group and the control group (P < .05); and Porphyromonas gingivalis, Fusobacterium nucleatum, Bacteroides forsythus (B.f), and Agglomerata actinomycetes in the 2 groups were statistically significant after 3 months of orthodontic treatment (P < .05). CONCLUSION SUBSECTIONS In fixed orthodontic treatment, S. baicalensis Georgi gargle can effectively inhibit oral pathogens and maintain periodontal health.
Collapse
Affiliation(s)
- Peng Zhang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, China
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Shen Guo Chen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, China
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Jia Ting Wang
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Jin Dong Wang
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Zai Hong Chen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, China
| | - Hai Sheng Lin
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, China
| |
Collapse
|
2
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
3
|
Atila D, Kumaravel V. Advances in antimicrobial hydrogels for dental tissue engineering: regenerative strategies for endodontics and periodontics. Biomater Sci 2023; 11:6711-6747. [PMID: 37656064 DOI: 10.1039/d3bm00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Dental tissue infections have been affecting millions of patients globally leading to pain, severe tissue damage, or even tooth loss. Commercial sterilizers may not be adequate to prevent frequent dental infections. Antimicrobial hydrogels have been introduced as an effective therapeutic strategy for endodontics and periodontics since they have the capability of imitating the native extracellular matrix of soft tissues. Hydrogel networks are considered excellent drug delivery platforms due to their high-water retention capacity. In this regard, drugs or nanoparticles can be incorporated into the hydrogels to endow antimicrobial properties as well as to improve their regenerative potential, once biocompatibility criteria are met avoiding high dosages. Herein, novel antimicrobial hydrogel formulations were discussed for the first time in the scope of endodontics and periodontics. Such hydrogels seem outstanding candidates especially when designed not only as simple volume fillers but also as smart biomaterials with condition-specific adaptability within the dynamic microenvironment of the defect site. Multifunctional hydrogels play a pivotal role against infections, inflammation, oxidative stress, etc. along the way of dental regeneration. Modern techniques (e.g., 3D and 4D-printing) hold promise to develop the next generation of antimicrobial hydrogels together with their limitations such as infeasibility of implantation.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
4
|
Zheng H, Zhou Y, Zheng Y, Liu G. Advances in hydrogels for the treatment of periodontitis. J Mater Chem B 2023; 11:7321-7333. [PMID: 37431231 DOI: 10.1039/d3tb00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Periodontitis is the second most prevalent oral disease and can cause serious harm to human health. Hydrogels are excellent biomaterials that can be used for periodontitis as drug delivery platforms to achieve inflammation control through high drug delivery efficiency and sustained drug release and as tissue scaffolds to achieve tissue remodelling through encapsulated cell wrapping and effective mass transfer. In this review, we summarize the latest advances in the treatment of periodontitis with hydrogels. The pathogenic mechanisms of periodontitis are introduced first, followed by the recent progress of hydrogels in controlling inflammation and tissue reconstruction, in which the specific performance of hydrogels is discussed in detail. Finally, the challenges and limitations of hydrogels for clinical applications in periodontitis are discussed and possible directions for development are proposed. This review aims to provide a reference for the design and fabrication of hydrogels for the treatment of periodontitis.
Collapse
Affiliation(s)
- Huiyu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yuan Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Hot Melt Extrusion as an Effective Process in the Development of Mucoadhesive Tablets Containing Scutellariae baicalensis radix Extract and Chitosan Dedicated to the Treatment of Oral Infections. Int J Mol Sci 2023; 24:ijms24065834. [PMID: 36982908 PMCID: PMC10054152 DOI: 10.3390/ijms24065834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Hot Melt Extrusion (HME) technology was developed to obtain blends containing lyophilized Scutellariae baicalensis root extract and chitosan in order to improve the rheological properties of the obtained blends, including tableting and compressibility properties. (Hydroxypropyl)methyl cellulose (HPMC) in 3 different ratios was used as amorphous matrix formers. The systems were characterized using X-ray powder diffraction (PXRD), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), and in vitro release, permeability, and microbiological activity studies. Then, the extrudates were used to prepare tablets in order to give them the appropriate pharmaceutical form. HPMC-based systems released baicalin more slowly, resulting in delayed peaks in the acceptor fluid. This behavior can be explained by the fact that HPMC swells significantly, and the dissolved substance must have diffused through the polymer network before being released. The best tabletability properties are provided by the formulation containing the extrudate with lyophilized extract HPMC 50:50 w/w. These tablets offer a valuable baicalin release profile while maintaining good mucoadhesive properties that condition the tablet’s retention in the application site and the effectiveness of therapy.
Collapse
|
6
|
Paczkowska-Walendowska M, Cielecka-Piontek J. Chitosan as a Functional Carrier for the Local Delivery Anti-Inflammatory Systems Containing Scutellariae baicalensis radix Extract. Pharmaceutics 2022; 14:2148. [PMID: 36297583 PMCID: PMC9611887 DOI: 10.3390/pharmaceutics14102148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 08/27/2023] Open
Abstract
The aim of the study was to establish the influence of chitosan on the preparation of systems containing Scutellariae baicalensis radix extract and to demonstrate the potential of anti-inflammatory action for the treatment of periodontitis. In the first stage, the impact of the variables (extraction mixture composition, temperature, and the number of extraction cycles) on the extracted samples' biological characteristics was analyzed using the Design of Experiments (DoE) approach. The best conditions for baicalin, baicalein, and wogonin extraction from Scutellariae baicalensis radix were 80% methanol in the extraction mixture, 70 °C, and 4 cycles per 60 min. The DoE approach can be used to choose the best chitosan system parameters with equal success. An increase in the deacetylation degree of chitosan used in the system improved the potential for reducing free radicals and inhibiting the hyaluronidase enzyme. Also, increasing the degree of chitosan deacetylation results in increased resistance of the carrier to biodegradation and an extended baicalin release profile, which is also associated with an increase in the viscosity of the chitosan-based system. In total, the system of a freeze-dried extract with chitosan 90/500 in the ratio of 2:1 (system S9) turns out to be the one with the best physicochemical (high percentage of baicalin release and the highest viscosity conditioning the prolonged stay at the site of administration) and biological properties (the highest antioxidant and anti-inflammatory activities), resulting in the highest potential for use in the treatment of oral inflammatory diseases.
Collapse
|
7
|
Chanaj-Kaczmarek J, Rosiak N, Szymanowska D, Rajewski M, Wender-Ozegowska E, Cielecka-Piontek J. The Chitosan-Based System with Scutellariae baicalensis radix Extract for the Local Treatment of Vaginal Infections. Pharmaceutics 2022; 14:740. [PMID: 35456574 PMCID: PMC9028937 DOI: 10.3390/pharmaceutics14040740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Scutellarie baicalensis radix, as a flavone-rich source, exhibits antibacterial, antifungal, antioxidant, and anti-inflammatory activity. It may be used as a therapeutic agent to treat various diseases, including vaginal infections. In this study, six binary mixtures of chitosan with stable S. baicalensis radix lyophilized extract were obtained and identified by spectral (ATR-FTIR, XRPD) and thermal (TG and DSC) methods. The changes in dissolution rates of active compounds and the significant increase in the biological properties towards metal chelating activity were observed, as well as the inhibition of hyaluronic acid degradation after mixing plant extract with chitosan. Moreover, the combination of S. baicalensis radix lyophilized extract with a carrier allowed us to obtain the binary systems with a higher antifungal activity than the pure extract, which may be effective in developing new strategies in the vaginal infections treatment, particularly vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Justyna Chanaj-Kaczmarek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland;
| | - Marcin Rajewski
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (M.R.); (E.W.-O.)
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (M.R.); (E.W.-O.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| |
Collapse
|
8
|
Karpiński TM, Ożarowski M, Alam R, Łochyńska M, Stasiewicz M. What Do We Know about Antimicrobial Activity of Astaxanthin and Fucoxanthin? Mar Drugs 2021; 20:md20010036. [PMID: 35049891 PMCID: PMC8778043 DOI: 10.3390/md20010036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin (AST) and fucoxanthin (FUC) are natural xanthophylls, having multidirectional activity, including antioxidant, anti-inflammatory, and anticancer. Both compounds also show antimicrobial activity, which is presented in this review article. There are few papers that have presented the antimicrobial activity of AST. Obtained antimicrobial concentrations of AST (200-4000 µg/mL) are much higher than recommended by the European Food Safety Authority for consumption (2 mg daily). Therefore, we suggest that AST is unlikely to be of use in the clinical treatment of infections. Our knowledge about the antimicrobial activity of FUC is better and this compound acts against many bacteria already in low concentrations 10-250 µg/mL. Toxicological studies on animals present the safety of FUC application in doses 200 mg/kg body weight and higher. Taking available research into consideration, a clinical application of FUC as the antimicrobial substance is real and can be successful. However, this aspect requires further investigation. In this review, we also present potential mechanisms of antibacterial activity of carotenoids, to which AST and FUC belong.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
- Correspondence: ; Tel.: +48-61-854-61-38
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland; (M.O.); (M.Ł.)
| | - Rahat Alam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
- Biological Solution Centre (BioSol Centre), Farmgate, Dhaka 1215, Bangladesh
| | - Małgorzata Łochyńska
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland; (M.O.); (M.Ł.)
| | - Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|