1
|
Zhang G, Wang M, Gao Y, Komianou AC, Georgiou EA, Wang Y, Zheng Y, Liu J, Kostakis IK, Zhao L. A Novel Synthesized Cyclohexane-Hydroxytyrosol Derivative Suppresses Ovarian Cancer Cell Growth Through Inducing Reactive Oxidative Species and Blocking Autophagic Flux. Antioxid Redox Signal 2024; 41:430-461. [PMID: 38407966 DOI: 10.1089/ars.2023.0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Affiliation(s)
- Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Min Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yilin Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | | | - Eleftheria A Georgiou
- Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yezi Zheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- School of Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ioannis K Kostakis
- Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Romariz SAA, Sanabria V, da Silva KR, Quintella ML, de Melo BAG, Porcionatto M, de Almeida DC, Longo BM. High Concentrations of Cannabidiol Induce Neurotoxicity in Neurosphere Culture System. Neurotox Res 2024; 42:14. [PMID: 38349488 DOI: 10.1007/s12640-024-00692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/30/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Recent studies have demonstrated that cannabinoids are potentially effective in the treatment of various neurological conditions, and cannabidiol (CBD), one of the most studied compounds, has been proposed as a non-toxic option. However, the adverse effects of CBD on neurodevelopmental processes have rarely been studied in cell culture systems. To better understand CBD's influence on neurodevelopment, we exposed neural progenitor cells (NPCs) to different concentrations of CBD (1 µM, 5 µM, and 10 µM). We assessed the morphology, migration, differentiation, cell death, and gene expression in 2D and 3D bioprinted models to stimulate physiological conditions more effectively. Our results showed that CBD was more toxic at higher concentrations (5 µM and 10 µM) and affected the viability of NPCs than at lower concentrations (1 µM), in both 2D and 3D models. Moreover, our study revealed that higher concentrations of CBD drastically reduced the size of neurospheres and the number of NPCs within neurospheres, impaired the morphology and mobility of neurons and astrocytes after differentiation, and reduced neurite sprouting. Interestingly, we also found that CBD alters cellular metabolism by influencing the expression of glycolytic and β-oxidative enzymes in the early and late stages of metabolic pathways. Therefore, our study demonstrated that higher concentrations of CBD promote important changes in cellular functions that are crucial during CNS development.
Collapse
Affiliation(s)
- Simone A A Romariz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Viviam Sanabria
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Karina Ribeiro da Silva
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Miguel L Quintella
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bruna A G de Melo
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marimélia Porcionatto
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Danilo Candido de Almeida
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Beatriz M Longo
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Yu X, Xu C, Zou Y, Liu W, Xie Y, Wu C. A prognostic metabolism-related gene signature associated with the tumor immune microenvironment in neuroblastoma. Am J Cancer Res 2024; 14:253-273. [PMID: 38323276 PMCID: PMC10839309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Neuroblastoma (NB) is the most prevalent malignant solid tumor in children. Tumor metabolism, including lipid, amino acid, and glucose metabolism, is intricately linked to the genesis and progression of tumors. This study aimed to establish a prognostic gene signature for NB patients, based on metabolism-related genes, and to investigate a treatment approach that could enhance the survival rate of high-risk NB patients. From the NB dataset GSE49710, we identified metabolism-related gene markers utilizing the "limma" R package and univariate Cox analysis combined with least absolute shrinkage and selection operator (LASSO) regression analysis. We explored the correlation between these gene markers and the overall survival of NB patients. Gene set enrichment analysis (GSEA) and single-sample GSEA algorithms were used to assess the differences in metabolism and immune status. Furthermore, we examined the association between metabolic subgroups and drug responsiveness. Concurrently, data downloaded from TARGET and MTAB were used for external verification. Using multicolor immunofluorescence and immunohistochemistry, we investigated the relationship between the lipid metabolism-related gene ELOVL6 with both the International Neuroblastoma Staging System classification of NB and survival rate. Finally, we explored the effect of high ELOVL6 expression on the immune microenvironment in NB using flow cytometry. We identified an eight-gene signature comprising metabolism-related genes in NB: ELOVL6, OSBPL9, RPL27A, HSD17B3, ACHE, AKR1C1, PIK3R1, and EPHX2. This panel effectively predicted disease-free survival, and was validated using an internal dataset from GSE49710 and two external datasets from the TARGET and MTAB databases. Moreover, our findings confirmed that ELOVL6 fosters an immunosuppressive microenvironment and contributes to the malignant progression in NB. The eight-gene signature is significant in predicting the prognosis of NB, effectively classifying patients into high- and low-risk groups. This classification may guide the development of innovative treatment strategies for these patients. Notably, the signature gene ELOVL6 markedly encourages an immunosuppressive microenvironment and malignant progression in NB.
Collapse
Affiliation(s)
- Xin Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Chao Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
- National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport HospitalTianjin, China
| | - Yiping Zou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Weishuai Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Yongjie Xie
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Chao Wu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| |
Collapse
|
4
|
Lv R, Lu F, Xu S. Hsa_circ_0001361 facilitates cell progression and glycolytic metabolism in neuroblastoma via interacting with mir-490-5p to induce TRIM2 upregulation. Metab Brain Dis 2023; 38:1621-1632. [PMID: 36920626 DOI: 10.1007/s11011-023-01197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/26/2023] [Indexed: 03/16/2023]
Abstract
Circular RNAs (circRNAs) can regulate the progression of neuroblastoma (NB) via miRNA/mRNA axis. This study aimed to investigate the functional mechanism of hsa_circ_0001361 in NB. Hsa_circ_0001361, miR-490-5p and tripartite motif 2 (TRIM2) were detected through reverse transcription-quantitative polymerase chain reaction. The proliferation ability was examined using cell counting kit-8 assay, colony formation assay and ethynyl-2'-deoxyuridine assay. Cell migration and invasion were assessed via transwell assay and wound healing assay. The protein levels were measured by western blot. Glycolysis was analyzed via commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were performed for target analysis. Hsa_circ_0001361 research in vivo was performed using xenograft tumor assay. Hsa_circ_0001361 was overexpressed in NB tissues and cells. Hsa_circ_0001361 downregulation suppressed cell proliferation, metastasis and glycolysis. Hsa_circ_0001361 served as a miR-490-5p sponge. The functions of hsa_circ_0001361 in NB cells were associated with miR-490-5p sponging effect. Hsa_circ_0001361 resulted in TRIM2 expression change via targeting miR-490-5p. MiR-490-5p acted as a tumor inhibitor in NB by downregulating TRIM2. Hsa_circ_0001361 knockdown reduced tumor growth in vivo through mediating miR-490-5p/TRIM2 axis. Our results suggested that hsa_circ_0001361 upregulated TRIM2 by absorbing miR-490-5p, thereby promoting cell malignant behaviors and glycolytic metabolism in NB.
Collapse
Affiliation(s)
- Rongrong Lv
- Department of neonatology, The Second People's Hospital of Jingmen, 448000, Jingmen, Hubei, China
| | - Fang Lu
- Department of neonatology, The Second People's Hospital of Jingmen, 448000, Jingmen, Hubei, China
| | - Shanshan Xu
- Department of Pediatrics, The First People's Hospital of Jingmen, No. 168 Xiangshan Road, 448000, Jingmen, Hubei, China.
| |
Collapse
|
5
|
Zeng Y, Qiu Y, Jiang W, Shen J, Yao X, He X, Li L, Fu B, Liu X. Biological Features of Extracellular Vesicles and Challenges. Front Cell Dev Biol 2022; 10:816698. [PMID: 35813192 PMCID: PMC9263222 DOI: 10.3389/fcell.2022.816698] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| |
Collapse
|