1
|
Bákány B, Antal R, Szentesi P, Emri T, Leiter É, Csernoch L, Keller NP, Pócsi I, Dienes B. The bZIP-type transcription factors NapA and RsmA modulate the volumetric ratio and the relative superoxide ratio of mitochondria in Aspergillus nidulans. Biol Futur 2023; 74:337-346. [PMID: 37814124 DOI: 10.1007/s42977-023-00184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Basic leucine zipper (bZIP) transcription factors are crucial components of differentiation, cellular homeostasis and the environmental stress defense of eukaryotes. In this work, we further studied the consequence of gene deletion and overexpression of two bZIP transcription factors, NapA and RsmA, on superoxide production, mitochondrial morphology and hyphal diameter of Aspergillus nidulans. We have found that reactive oxygen species production was influenced by both gene deletion and overexpression of napA under tert-butylhydroperoxide (tBOOH) elicited oxidative stress. Furthermore, gene expression of napA negatively correlated with mitochondrial volumetric ratio as well as sterigmatocystin production of A. nidulans. High rsmA expression was accompanied with elevated relative superoxide ratio in the second hyphal compartment. A negative correlation between the expression of rsmA and catalase enzyme activity or mitochondrial volumetric ratio was also confirmed by statistical analysis. Hyphal diameter was independent on either rsmA and napA expression as well as 0.2 mM tBOOH treatment.
Collapse
Affiliation(s)
- Bernadett Bákány
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Réka Antal
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Institute of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELRN-UD Cell Physiology Research Group, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary.
| | - László Csernoch
- Institute of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELRN-UD Cell Physiology Research Group, Debrecen, Hungary
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
- Department of Plant Pathology, University of Wisconsin, Madison, USA
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Beatrix Dienes
- Institute of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELRN-UD Cell Physiology Research Group, Debrecen, Hungary
| |
Collapse
|
2
|
Kocsis B, Lee MK, Antal K, Yu JH, Pócsi I, Leiter É, Emri T. Genome-Wide Gene Expression Analyses of the AtfA/AtfB-Mediated Menadione Stress Response in Aspergillus nidulans. Cells 2023; 12:463. [PMID: 36766807 PMCID: PMC9913763 DOI: 10.3390/cells12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The bZIP transcription factors (TFs) govern regulation of development, secondary metabolism, and various stress responses in filamentous fungi. In this work, we carried out genome-wide expression studies employing Illumina RNAseq to understand the roles of the two bZIP transcription factors AtfA and AtfB in Aspergillus nidulans. Comparative analyses of transcriptomes of control, ΔatfA, ΔatfB, and ΔatfAΔatfB mutant strains were performed. Dependence of a gene on AtfA (AtfB) was decided by its differential downregulation both between the reference and ΔatfA (ΔatfB) strains and between the ΔatfB (ΔatfA) and the ΔatfAΔatfB strains in vegetatively grown cells (mycelia) and asexual spores (conidia) of menadione sodium bisulfite (MSB)-treated or untreated cultures. As AtfA is the primary bZIP TF governing stress-response in A. nidulans, the number of differentially expressed genes for ΔatfA was significantly higher than for ΔatfB in both mycelial and conidial samples, and most of the AtfB-dependent genes showed AtfA dependence, too. Moreover, the low number of genes depending on AtfB but not on AtfA can be a consequence of ΔatfA leading to downregulation of atfB expression. Conidial samples showed much higher abundance of atfA and atfB mRNAs and more AtfA- and AtfB-affected genes than mycelial samples. In the presence of MSB, the number of AtfB- (but not of AtfA-) affected genes decreased markedly, which was accompanied with decreased mRNA levels of atfB in MSB-treated mycelial (reference strain) and conidial (ΔatfA mutant) samples. In mycelia, the overlap between the AtfA-dependent genes in MSB-treated and in untreated samples was low, demonstrating that distinct genes can be under AtfA control under different conditions. Carbohydrate metabolism genes were enriched in the set of AtfA-dependent genes. Among them, AtfA-dependence of glycolytic genes in conidial samples was the most notable. Levels of transcripts of certain secondary metabolitic gene clusters, such as the Emericellamide cluster, also showed AtfA-dependent regulation. Genes encoding catalase and histidine-containing phosphotransfer proteins showed AtfA-dependence under all experimental conditions. There were 23 AtfB-dependent genes that did not depend on AtfA under any of our experimental conditions. These included a putative α-glucosidase (agdB), a putative α-amylase, calA, which is involved in early conidial germination, and an alternative oxidase. In summary, in A. nidulans there is a complex interaction between the two bZIP transcription factors, where AtfA plays the primary regulatory role.
Collapse
Affiliation(s)
- Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Mi-Kyung Lee
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Károly Antal
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Zoology, Eszterházy Károly Catholic University, Leányka Str. 6-8., 3300 Eger, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Pérez-Pérez WD, Carrasco-Navarro U, García‑Estrada C, Kosalková K, Gutiérrez-Ruíz MC, Barrios-González J, Fierro F. bZIP transcription factors PcYap1 and PcRsmA link oxidative stress response to secondary metabolism and development in Penicillium chrysogenum. Microb Cell Fact 2022; 21:50. [PMID: 35366869 PMCID: PMC8977021 DOI: 10.1186/s12934-022-01765-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/27/2022] [Indexed: 01/23/2023] Open
Abstract
Abstract
Background
Reactive oxygen species (ROS) trigger different morphogenic processes in filamentous fungi and have been shown to play a role in the regulation of the biosynthesis of some secondary metabolites. Some bZIP transcription factors, such as Yap1, AtfA and AtfB, mediate resistance to oxidative stress and have a role in secondary metabolism regulation. In this work we aimed to get insight into the molecular basis of this regulation in the industrially important fungus Penicillium chrysogenum through the characterization of the role played by two effectors that mediate the oxidative stress response in development and secondary metabolism.
Results
In P. chrysogenum, penicillin biosynthesis and conidiation are stimulated by the addition of H2O2 to the culture medium, and this effect is mediated by the bZIP transcription factors PcYap1 and PcRsmA. Silencing of expression of both proteins by RNAi resulted in similar phenotypes, characterized by increased levels of ROS in the cell, reduced conidiation, higher sensitivity of conidia to H2O2 and a decrease in penicillin production. Both PcYap1 and PcRsmA are able to sense H2O2-generated ROS in vitro and change its conformation in response to this stimulus. PcYap1 and PcRsmA positively regulate the expression of brlA, the first gene of the conidiation central regulatory pathway. PcYap1 binds in vitro to a previously identified regulatory sequence in the promoter of the penicillin gene pcbAB: TTAGTAA, and to a TTACTAA sequence in the promoter of the brlA gene, whereas PcRsmA binds to the sequences TGAGACA and TTACGTAA (CRE motif) in the promoters of the pcbAB and penDE genes, respectively.
Conclusions
bZIP transcription factors PcYap1 and PcRsmA respond to the presence of H2O2-generated ROS and regulate oxidative stress response in the cell. Both proteins mediate ROS regulation of penicillin biosynthesis and conidiation by binding to specific regulatory elements in the promoters of key genes. PcYap1 is identified as the previously proposed transcription factor PTA1 (Penicillin Transcriptional Activator 1), which binds to the regulatory sequence TTAGTAA in the pcbAB gene promoter. This is the first report of a Yap1 protein directly regulating transcription of a secondary metabolism gene. A model describing the regulatory network mediated by PcYap1 and PcRsmA is proposed.
Collapse
|
4
|
Systematic Characterization of bZIP Transcription Factors Required for Development and Aflatoxin Generation by High-Throughput Gene Knockout in Aspergillus flavus. J Fungi (Basel) 2022; 8:jof8040356. [PMID: 35448587 PMCID: PMC9031554 DOI: 10.3390/jof8040356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022] Open
Abstract
The basic leucine zipper (bZIP) is an important transcription factor required for fungal development, nutrient utilization, biosynthesis of secondary metabolites, and defense against various stresses. Aspergillus flavus is a major producer of aflatoxin and an opportunistic fungus on a wide range of hosts. However, little is known about the role of most bZIP genes in A. flavus. In this study, we developed a high-throughput gene knockout method based on an Agrobacterium-mediated transformation system. Gene knockout construction by yeast recombinational cloning and screening of the null mutants by double fluorescence provides an efficient way to construct gene-deleted mutants for this multinucleate fungus. We deleted 15 bZIP genes in A. flavus. Twelve of these genes were identified and characterized in this strain for the first time. The phenotypic analysis of these mutants showed that the 15 bZIP genes play a diverse role in mycelial growth (eight genes), conidiation (13 genes), aflatoxin biosynthesis (10 genes), oxidative stress response (11 genes), cell wall stress (five genes), osmotic stress (three genes), acid and alkali stress (four genes), and virulence to kernels (nine genes). Impressively, all 15 genes were involved in the development of sclerotia, and the respective deletion mutants of five of them did not produce sclerotia. Moreover, MetR was involved in this biological process. In addition, HapX and MetR play important roles in the adaptation to excessive iron and sulfur metabolism, respectively. These studies provide comprehensive insights into the role of bZIP transcription factors in this aflatoxigenic fungus of global significance.
Collapse
|