1
|
Oh JW, Pushparaj SSC, Muthu M, Gopal J. Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3936. [PMID: 38068573 PMCID: PMC10871120 DOI: 10.3390/plants12233936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/07/2023] [Accepted: 11/18/2023] [Indexed: 02/18/2024]
Abstract
Extensive growth of microscopic algae and cyanobacteria results in harmful algal blooms (HABs) in marine, brackish, and freshwater environments. HABs can harm humans and animals through their toxicity or by producing ecological conditions such as oxygen depletion, which can kill fish and other economically or ecologically important organisms. This review summarizes the reports on various HABs that are able to bring about marine fish kills. The predominant HABs, their toxins, and their effects on fishes spread across various parts of the globe are discussed. The mechanism of HAB-driven fish kills is discussed based on the available reports, and existing mitigation methods are presented. Lapses in the large-scale implementation of mitigation methods demonstrated under laboratory conditions are projected. Clay-related technologies and nano-sorption-based nanotechnologies, although proven to make significant contributions, have not been put to use in real-world conditions. The gaps in the technology transfer of the accomplished mitigation prototypes are highlighted. Further uses of remote sensing and machine learning state-of-the-art techniques for the detection and identification of HABs are recommended.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea;
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| |
Collapse
|
2
|
Lu J, Niu X, Wang H, Zhang H, Guan W. Toxic dinoflagellate Karenia mikimotoi induces apoptosis in Neuro-2a cells through an oxidative stress-mediated mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115667. [PMID: 37944466 DOI: 10.1016/j.ecoenv.2023.115667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The dinoflagellate Karenia mikimotoi is a toxic bloom-forming species that threatens aquaculture and public health worldwide. Previous studies showed that K. mikimotoi induces neurotoxicity; however, the underlying mechanism is poorly understood. In this study, three neural cell lines were used to investigate the potential neurotoxicity of K. mikimotoi. The tested cells were exposed to a ruptured cell solution (RCS) of K. mikimotoi at different concentrations (0.5 × 105, 1.0 × 105, 2.0 × 105, 4.0 × 105, and 6 × 105 cells mL-1) for 24 h, and the RCS decreased cell viabilities and promoted Neuro-2a (N2A) cell apoptosis in a dose-dependent manner. The underlying mechanism was further investigated in N2A cells. At the biochemical level, the RCS stimulated reactive oxygen species (ROS) and malondialdehyde (MDA) formation, decreased SOD activity, and reduced mitochondrial membrane potential (MMP). At the gene level, the moderate RCS treatment (2.0 × 105 cells mL-1) upregulated antioxidant response genes (e.g., nrf-2, HO-1, NQO-1, and cat) to alleviate RCS-induced oxidative stress, while the high RCS treatment (4.0 × 105 cells mL-1) downregulated these genes, thereby aggravating oxidative stress. Meanwhile, apoptosis-related genes (e.g., p53, caspase 3, and bax2) were significantly upregulated and the anti-apoptotic gene bcl2 was suppressed after RCS treatment. Western blotting results for Caspase 3, Bax2 and Bcl2 were consistent with the mRNA trends. These results revealed that K. mikimotoi RCS can induce neural cell apoptosis via the oxidative stress-mediated mitochondrial pathway, providing novel insights into the neurotoxicity of K. mikimotoi.
Collapse
Affiliation(s)
- Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoqin Niu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Clinical Laboratory, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Hong Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Marine Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|