1
|
Stupar RM, Locke AM, Allen DK, Stacey MG, Ma J, Weiss J, Nelson RT, Hudson ME, Joshi T, Li Z, Song Q, Jedlicka JR, MacIntosh GC, Grant D, Parrott WA, Clemente TE, Stacey G, An YC, Aponte‐Rivera J, Bhattacharyya MK, Baxter I, Bilyeu KD, Campbell JD, Cannon SB, Clough SJ, Curtin SJ, Diers BW, Dorrance AE, Gillman JD, Graef GL, Hancock CN, Hudson KA, Hyten DL, Kachroo A, Koebernick J, Libault M, Lorenz AJ, Mahan AL, Massman JM, McGinn M, Meksem K, Okamuro JK, Pedley KF, Rainey KM, Scaboo AM, Schmutz J, Song B, Steinbrenner AD, Stewart‐Brown BB, Toth K, Wang D, Weaver L, Zhang B, Graham MA, O'Rourke JA. Soybean genomics research community strategic plan: A vision for 2024-2028. THE PLANT GENOME 2024; 17:e20516. [PMID: 39572930 PMCID: PMC11628913 DOI: 10.1002/tpg2.20516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 12/11/2024]
Abstract
This strategic plan summarizes the major accomplishments achieved in the last quinquennial by the soybean [Glycine max (L.) Merr.] genetics and genomics research community and outlines key priorities for the next 5 years (2024-2028). This work is the result of deliberations among over 50 soybean researchers during a 2-day workshop in St Louis, MO, USA, at the end of 2022. The plan is divided into seven traditional areas/disciplines: Breeding, Biotic Interactions, Physiology and Abiotic Stress, Functional Genomics, Biotechnology, Genomic Resources and Datasets, and Computational Resources. One additional section was added, Training the Next Generation of Soybean Researchers, when it was identified as a pressing issue during the workshop. This installment of the soybean genomics strategic plan provides a snapshot of recent progress while looking at future goals that will improve resources and enable innovation among the community of basic and applied soybean researchers. We hope that this work will inform our community and increase support for soybean research.
Collapse
Affiliation(s)
- Robert M. Stupar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Anna M. Locke
- USDA‐ARS Soybean & Nitrogen Fixation Research UnitRaleighNorth CarolinaUSA
| | - Doug K. Allen
- USDA‐ARS Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Minviluz G. Stacey
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Jianxin Ma
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Jackie Weiss
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Rex T. Nelson
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | | | - Trupti Joshi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
- MU Institute for Data Science and InformaticsUniversity of Missouri–ColumbiaColumbiaMissouriUSA
| | - Zenglu Li
- Department of Crop and Soil Sciences, and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Qijian Song
- USDA‐ARS Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research CenterBeltsvilleMarylandUSA
| | | | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIowaUSA
| | - David Grant
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Wayne A. Parrott
- Department of Crop and Soil Sciences, and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Tom E. Clemente
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Gary Stacey
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | | | | | | | - Ivan Baxter
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | | | - Steven B. Cannon
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | - Steven J. Clough
- USDA‐ARS Soybean/Maize Germplasm, Pathology and Genetics Research UnitUrbanaIllinoisUSA
| | | | - Brian W. Diers
- Department of Crop SciencesUniversity of IllinoisUrbanaIllinoisUSA
| | - Anne E. Dorrance
- Department of Plant PathologyThe Ohio State UniversityWoosterOhioUSA
| | | | - George L. Graef
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - C. Nathan Hancock
- Department of Biological, Environmental, and Earth SciencesUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Karen A. Hudson
- USDA‐ARS Crop Production and Pest Control Research UnitWest LafayetteIndianaUSA
| | - David L. Hyten
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Aardra Kachroo
- Department of Plant PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental SciencesAuburn UniversityAuburnAlabamaUSA
| | - Marc Libault
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Aaron J. Lorenz
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Adam L. Mahan
- USDA‐ARS Soybean/Maize Germplasm, Pathology and Genetics Research UnitUrbanaIllinoisUSA
| | | | - Michaela McGinn
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural SystemsSouthern Illinois UniversityCarbondaleIllinoisUSA
| | - Jack K. Okamuro
- USDA‐ARS Crop Production and ProtectionBeltsvilleMarylandUSA
| | - Kerry F. Pedley
- USDA‐ARS Foreign Disease‐Weed Science Research UnitFt. DetrickMarylandUSA
| | | | - Andrew M. Scaboo
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Jeremy Schmutz
- DOE Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- HudsonAlpha Institute of BiotechnologyHuntsvilleAlabamaUSA
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | | | | | | | - Dechun Wang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Lisa Weaver
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Bo Zhang
- School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | | | | |
Collapse
|
2
|
Li F, Mai C, Liu Y, Deng Y, Wu L, Zheng X, He H, Huang Y, Luo Z, Wang J. Soybean PHR1-regulated low phosphorus-responsive GmRALF22 promotes phosphate uptake by stimulating the expression of GmPTs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112211. [PMID: 39122156 DOI: 10.1016/j.plantsci.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Rapid alkalisation factors (RALFs) play crucial roles in plant responses to nutrient stress. However, the functions of Glycine max RALFs (GmRALFs) under low P (LP) stress remain elusive. In this study, we first identified 27 GmRALFs in soybean and then revealed that, under LP conditions, GmRALF10, GmRALF11, and GmRALF22 were induced in both roots and leaves, whereas GmRALF5, GmRALF6, and GmRALF25 were upregulated in leaves. Furthermore, GmRALF22 was found to be the target gene of the transcription factor GmPHR1, which binds to the P1BS cis-element in the promoter of GmRALF22 via electrophoretic mobility shift assay and dual-luciferase experiments. Colonisation with Bacillus subtilis which delivers GmRALF22, increases the expression of the high-affinity phosphate (Pi) transporter genes GmPT2, GmPT11, GmPT13, and GmPT14, thus increasing the total amount of dry matter and soluble Pi in soybeans. RNA sequencing revealed that GmRALF22 alleviates LP stress by regulating the expression of jasmonic acid- (JA-), salicylic acid- (SA-), and immune-related genes. Finally, we verified that GmRALF22 was dependent on FERONIA (FER) to promote Arabidopsis primary root growth under LP conditions. In summary, the GmPHR1-GmRALF22 module positively regulates soybean tolerance to LP.
Collapse
Affiliation(s)
- Fangjian Li
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Cuishan Mai
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaru Deng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Wu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinni Zheng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huijing He
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yilin Huang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxi Luo
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
3
|
O’Rourke JA, Graham MA. Investigating the Role of Known Arabidopsis Iron Genes in a Stress Resilient Soybean Line. Int J Mol Sci 2024; 25:11480. [PMID: 39519033 PMCID: PMC11545859 DOI: 10.3390/ijms252111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Genes involved in iron deficiency responses have been well characterized in Arabidopsis thaliana, but their roles in crop species have not been well explored. Reliance on model species may fail to identify novel iron stress mechanisms present within crop species, likely selected by hundreds of years of selection. Fiskeby III (PI 438471) is a soybean line from Sweden that demonstrates high levels of resilience to numerous stresses. Earlier Fiskeby III studies have identified a suite of genes responding to iron deficiency stress in Fiskeby III that are also associated with Arabidopsis iron deficiency responses. We were interested in determining how canonical iron genes function in Fiskeby III under normal and iron stress conditions. To investigate this, we used virus-induced gene silencing to knock down gene expression of three iron deficiency response genes (FER-like iron deficiency induced transcription factor (FIT), elongated hypocotyl 5 (HY5) and popeye (PYE)) in Fiskeby III. Analyses of RNAseq data generated from silenced plants in iron-sufficient and -deficient conditions found silencing FIT and HY5 altered general stress responses but did not impact iron deficiency tolerance, confirming Fiskeby III utilizes novel mechanisms to tolerate iron deficiency stress.
Collapse
Affiliation(s)
- Jamie A. O’Rourke
- Agricultural Research Service, Corn Insects, and Crop Genetics Research Unit, United States Department of Agriculture, Ames, IA 50010, USA;
| | | |
Collapse
|
4
|
Kohlhase DR, O’Rourke JA, Graham MA. GmGLU1 and GmRR4 contribute to iron deficiency tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1295952. [PMID: 38476685 PMCID: PMC10927968 DOI: 10.3389/fpls.2024.1295952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Iron deficiency chlorosis (IDC) is a form of abiotic stress that negatively impacts soybean yield. In a previous study, we demonstrated that the historical IDC quantitative trait locus (QTL) on soybean chromosome Gm03 was composed of four distinct linkage blocks, each containing candidate genes for IDC tolerance. Here, we take advantage of virus-induced gene silencing (VIGS) to validate the function of three high-priority candidate genes, each corresponding to a different linkage block in the Gm03 IDC QTL. We built three single-gene constructs to target GmGLU1 (GLUTAMATE SYNTHASE 1, Glyma.03G128300), GmRR4 (RESPONSE REGULATOR 4, Glyma.03G130000), and GmbHLH38 (beta Helix Loop Helix 38, Glyma.03G130400 and Glyma.03G130600). Given the polygenic nature of the iron stress tolerance trait, we also silenced the genes in combination. We built two constructs targeting GmRR4+GmGLU1 and GmbHLH38+GmGLU1. All constructs were tested on the iron-efficient soybean genotype Clark grown in iron-sufficient conditions. We observed significant decreases in soil plant analysis development (SPAD) measurements using the GmGLU1 construct and both double constructs, with potential additive effects in the GmRR4+GmGLU1 construct. Whole genome expression analyses (RNA-seq) revealed a wide range of affected processes including known iron stress responses, defense and hormone signaling, photosynthesis, and cell wall structure. These findings highlight the importance of GmGLU1 in soybean iron stress responses and provide evidence that IDC is truly a polygenic trait, with multiple genes within the QTL contributing to IDC tolerance. Finally, we conducted BLAST analyses to demonstrate that the Gm03 IDC QTL is syntenic across a broad range of plant species.
Collapse
Affiliation(s)
| | - Jamie A. O’Rourke
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Michelle A. Graham
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Nidumolu LCM, Lorilla KM, Chakravarty I, Uhde-Stone C. Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112117. [PMID: 37299096 DOI: 10.3390/plants12112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Soybean (Glycine max) is an important agricultural crop, but nutrient deficiencies frequently limit soybean production. While research has advanced our understanding of plant responses to long-term nutrient deficiencies, less is known about the signaling pathways and immediate responses to certain nutrient deficiencies, such as Pi and Fe deficiencies. Recent studies have shown that sucrose acts as a long-distance signal that is sent in increased concentrations from the shoot to the root in response to various nutrient deficiencies. Here, we mimicked nutrient deficiency-induced sucrose signaling by adding sucrose directly to the roots. To unravel transcriptomic responses to sucrose acting as a signal, we performed Illumina RNA-sequencing of soybean roots treated with sucrose for 20 min and 40 min, compared to non-sucrose-treated controls. We obtained a total of 260 million paired-end reads, mapping to 61,675 soybean genes, some of which are novel (not yet annotated) transcripts. Of these, 358 genes were upregulated after 20 min, and 2416 were upregulated after 40 min of sucrose exposure. GO (gene ontology) analysis revealed a high proportion of sucrose-induced genes involved in signal transduction, particularly hormone, ROS (reactive oxygen species), and calcium signaling, in addition to regulation of transcription. In addition, GO enrichment analysis indicates that sucrose triggers crosstalk between biotic and abiotic stress responses.
Collapse
Affiliation(s)
| | - Kristina Mae Lorilla
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| | - Indrani Chakravarty
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| |
Collapse
|
6
|
O’Rourke JA, Graham MA. Coupling VIGS with Short- and Long-Term Stress Exposure to Understand the Fiskeby III Iron Deficiency Stress Response. Int J Mol Sci 2022; 24:ijms24010647. [PMID: 36614091 PMCID: PMC9820625 DOI: 10.3390/ijms24010647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Yield loss due to abiotic stress is an increasing problem in agriculture. Soybean is a major crop for the upper Midwestern United States and calcareous soils exacerbate iron deficiency for growers, resulting in substantial yield losses. Fiskeby III is a soybean variety uniquely resistant to a variety of abiotic stresses, including iron deficiency. Previous studies identified a MATE transporter (Glyma.05G001700) associated with iron stress tolerance in Fiskeby III. To understand the function of this gene in the Fiskeby III response to iron deficiency, we coupled its silencing using virus-induced gene silencing with RNAseq analyses at two timepoints. Analyses of these data confirm a role for the MATE transporter in Fiskeby III iron stress responses. Further, they reveal that Fiskeby III induces transcriptional reprogramming within 24 h of iron deficiency stress, confirming that like other soybean varieties, Fiskeby III is able to quickly respond to stress. However, Fiskeby III utilizes novel genes and pathways in its iron deficiency response. Identifying and characterizing these genes and pathways in Fiskeby III provides novel targets for improving abiotic stress tolerance in elite soybean lines.
Collapse
|