1
|
Midorikawa S, Mizukami H, Kudoh K, Takeuchi Y, Sasaki T, Kushibiki H, Wang Z, Itakura Y, Murakami K, Kudo N, Nagaki T, Wakasa T, Nakamura Y, Matsubara A. Diabetes can increase the prevalence of EBV infection and worsen the prognosis of nasopharyngeal carcinoma. Pathology 2024; 56:65-74. [PMID: 38071160 DOI: 10.1016/j.pathol.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/24/2024]
Abstract
Epstein‒Barr virus (EBV) infection is a primary oncogenic factor of nasopharyngeal carcinoma (NPC) that elicits epithelial-mesenchymal transition (EMT). Although diabetic patients are more susceptible to various infectious diseases, the pathological association with virus-related NPC has not yet been clarified. Herein, we evaluated the influence of diabetes on the clinicopathological changes of 70 patients with NPC. Disease-specific survival (DSS) modified by viral infection was also analysed. The proportion of NPC patients with diabetes was 32.9% (23/70 cases), and 91.3% (21/23 cases) were infected with EBV detected by EBER-I in situ hybridisation. NPC with diabetes showed an effect on EMT evaluated by immunostaining for E-cadherin and vimentin, which was correlated with HbA1c levels. Receiver operating characteristic (ROC) curve analysis determined a HbA1c level of 6.5% as the cut-off value for primary disease death at 2 years [area under the curve (AUC) 0.76; sensitivity 0.64; and specificity 0.81]. High HbA1c levels (≥6.5%) significantly increased the number of lymph node metastases in NPC compared to low HbA1c levels (<6.5%, p<0.01). Diabetic NPC patients had a significantly poorer prognosis than all non-diabetic patients (DSS, 72 months vs not reached, p<0.05). Diabetic EBV-positive NPC patients had a significantly poorer prognosis than non-diabetic EBV-positive patients (DSS, 35 months vs not reached, p<0.01). Multivariate analysis using the Cox proportional hazards model also suggested that HbA1c ≥6.5% was a significant factor in poor prognosis, with a hazard ratio of 6.84 (p<0.05). Collectively, our results revealed for the first time a high prevalence of EBV infection, poor prognosis and the importance of proper glycaemic control in diabetic NPC patients.
Collapse
Affiliation(s)
- Shin Midorikawa
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Otolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Zhenchao Wang
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuko Itakura
- Department of Pathology, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Miyagi, Japan
| | - Kotaro Murakami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Naomi Kudo
- Department of Otolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takahiko Nagaki
- Department of Otolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tomoko Wakasa
- Department of Diagnostic Pathology, Kindai University Nara Hospital, Nara, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Atsushi Matsubara
- Department of Otolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
2
|
Senavirathna L, Pan S, Chen R. Protein Advanced Glycation End Products and Their Implications in Pancreatic Cancer. Cancer Prev Res (Phila) 2023; 16:601-610. [PMID: 37578815 PMCID: PMC10843555 DOI: 10.1158/1940-6207.capr-23-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Protein advanced glycation end products (AGE) formed by nonenzymatic glycation can disrupt the normal structure and function of proteins, and stimulate the receptor for AGEs (RAGE), triggering intricate mechanisms that are etiologically related to various chronic diseases, including pancreatic cancer. Many common risk factors of pancreatic cancer are the major sources for the formation of protein AGEs and glycative stress in the human body. Abnormal accumulation of protein AGEs can impair the cellular proteome and promote AGE-RAGE driven pro-inflammatory signaling cascades, leading to increased oxidative stress, protease resistance, protein dysregulation, transcription activity of STAT, NF-κB, and AP-1, aberrant status in ubiquitin-proteasome system and autophagy, as well as other molecular events that are susceptible for the carcinogenic transformation towards the development of neoplasms. Here, we review studies to highlight our understanding in the orchestrated molecular events in bridging the impaired proteome, dysregulated functional networks, and cancer hallmarks initiated upon protein AGE formation and accumulation in pancreatic cancer.
Collapse
Affiliation(s)
- Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ru Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Hara Y, Mizukami H, Yamazaki K, Yamada T, Igawa A, Takeuchi Y, Sasaki T, Kushibiki H, Murakami K, Kudoh K, Ishido K, Hakamada K. Dual epigenetic changes in diabetes mellitus-associated pancreatic ductal adenocarcinoma correlate with downregulation of E-cadherin and worsened prognosis. J Pathol Clin Res 2023; 9:354-366. [PMID: 37246239 PMCID: PMC10397378 DOI: 10.1002/cjp2.326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/02/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Diabetes mellitus (DM) is a risk factor for pancreatic ductal adenocarcinoma (PDAC) that promotes the promoter methylation of CDH1. It is still unclear whether DM can exert other epigenetic effects, such as altering microRNA (miR) expression, in PDAC. The expression of miR-100-5p is known to be changed in DM patients and can suppress the expression of E-cadherin. In this study, the correlation between DM status and dual epigenetic changes was evaluated in PDAC specimens from patients who underwent radical surgical resection. A total of 132 consecutive patients with PDAC were clinicopathologically evaluated. E-cadherin and nuclear β-catenin expression was measured using immunohistochemistry. DNA and miRs were extracted from the main tumor site on formalin-fixed paraffin-embedded tissue sections. TaqMan miR assays were applied to assess miR-100-5p expression. Bisulfite modification was conducted on the extracted DNA, which was then subjected to methylation-specific polymerase chain reaction. Immunohistochemistry revealed that decreased E-cadherin expression and increased nuclear β-catenin expression were significantly associated with DM and poor tumor cell differentiation. The presence of long-duration DM (≥3 years) was a significant factor contributing to CDH1 promoter methylation (p < 0.01), while miR-100-5p expression was proportionally correlated with the preoperative HbA1c level (R = 0.34, p < 0.01), but not the duration of DM. The subjects with high miR-100-5p expression and CDH1 promoter methylation showed the highest level of vessel invasion and prevalence of tumor size ≥30 mm. PDAC subjects with dual epigenetic changes showed poorer overall survival (OS) than those with a single epigenetic change. miR-100-5p expression ≥4.13 and CDH1 promoter methylation independently predicted poor OS and disease-free survival (DFS) in the multivariate analysis. OS and DFS worsened in DM subjects with both HbA1c ≥ 6.5% and DM duration ≥3 years. Thus, DM is associated with two modes of epigenetic change by independent mechanisms and worsens prognosis.
Collapse
Affiliation(s)
- Yutaro Hara
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takahiro Yamada
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Akiko Igawa
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Yuki Takeuchi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hanae Kushibiki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kotaro Murakami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keinosuke Ishido
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kenichi Hakamada
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
4
|
Garza-Campos A, Prieto-Correa JR, Domínguez-Rosales JA, Hernández-Nazará ZH. Implications of receptor for advanced glycation end products for progression from obesity to diabetes and from diabetes to cancer. World J Diabetes 2023; 14:977-994. [PMID: 37547586 PMCID: PMC10401444 DOI: 10.4239/wjd.v14.i7.977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are chronic pathologies with a high incidence worldwide. They share some pathological mechanisms, including hyperinsulinemia, the production and release of hormones, and hyperglycemia. The above, over time, affects other systems of the human body by causing tissue hypoxia, low-grade inflammation, and oxidative stress, which lay the pathophysiological groundwork for cancer. The leading causes of death globally are T2DM and cancer. Other main alterations of this pathological triad include the accumulation of advanced glycation end products and the release of endogenous alarmins due to cell death (i.e., damage-associated molecular patterns) such as the intracellular proteins high-mobility group box protein 1 and protein S100 that bind to the receptor for advanced glycation products (RAGE) - a multiligand receptor involved in inflammatory and metabolic and neoplastic processes. This review analyzes the latest advanced reports on the role of RAGE in the development of obesity, T2DM, and cancer, with an aim to understand the intracellular signaling mechanisms linked with cancer initiation. This review also explores inflammation, oxidative stress, hypoxia, cellular senescence, RAGE ligands, tumor microenvironment changes, and the “cancer hallmarks” of the leading tumors associated with T2DM. The assimilation of this information could aid in the development of diagnostic and therapeutic approaches to lower the morbidity and mortality associated with these diseases.
Collapse
Affiliation(s)
- Andrea Garza-Campos
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Roberto Prieto-Correa
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Alfredo Domínguez-Rosales
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Zamira Helena Hernández-Nazará
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
5
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
6
|
Pan X, Mizukami H, Hara Y, Yamada T, Yamazaki K, Kudoh K, Takeuchi Y, Sasaki T, Kushibiki H, Igawa A, Hakamada K. Diabetes mellitus impacts on expression of DNA mismatch repair protein PMS2 and tumor microenvironment in pancreatic ductal adenocarcinoma. J Diabetes Investig 2022; 14:132-144. [PMID: 36453157 PMCID: PMC9807152 DOI: 10.1111/jdi.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
Abstract
AIMS/INTRODUCTION The mismatch repair (MMR) protein recognizes DNA replication errors and plays an important role in tumorigenesis, including pancreatic ductal adenocarcinoma (PDAC). Although PMS2, a MMR protein, is degraded under oxidative stress, the effects of diabetes are still unclear. Herein, we focused on whether diabetes affected MMR protein expression in PDAC. MATERIALS AND METHODS Tissues from 61 surgically resected PDAC subjects were clinicopathologically analyzed. Immunohistochemical analysis was performed for MMR protein expression, oxidative stress, and immune cell infiltration. The change of MMR protein expression was assessed in PDAC cell lines under stimulation with 25 mM glucose and 500 μM palmitic acid. Survival curves were analyzed by the Kaplan-Meier method with the log-rank test. RESULTS Diabetes complicated with dyslipidemia significantly decreased the expression of PMS2 in PDAC tissues with an inverse correlation with the degree of oxidative stress. Palmitic acid combined with high glucose induced degradation of PMS2 protein, enhancing oxidative stress in vitro. CD8+ T-cell infiltration was associated with a short duration of type 2 diabetes (≤4 years) and a low expression of PMS2 in PDAC tissues, while CD163+ tumor-associated macrophage infiltration was increased with a long duration of diabetes (>4 years). A short duration of diabetes exhibited a better prognosis than nondiabetic subjects with PDAC (P < 0.05), while a long duration of diabetes had a worse prognosis (P < 0.05). CONCLUSIONS The different phases of diabetes have a major impact on PDAC by altering PMS2 expression and the tumor immune microenvironment, which can be targeted by an immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Xuekai Pan
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan,Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineAomoriJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan
| | - Yutaro Hara
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan,Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineAomoriJapan
| | - Takahiro Yamada
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan,Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineAomoriJapan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan,Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineAomoriJapan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan
| | - Yuki Takeuchi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan
| | - Hanae Kushibiki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan
| | - Akiko Igawa
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineAomoriJapan,Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineAomoriJapan
| | - Kenichi Hakamada
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineAomoriJapan
| |
Collapse
|
7
|
Hamada S, Matsumoto R, Masamune A. Pancreatic Stellate Cells and Metabolic Alteration: Physiology and Pathophysiology. Front Physiol 2022; 13:865105. [PMID: 35370770 PMCID: PMC8967348 DOI: 10.3389/fphys.2022.865105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Pancreatic stellate cells play a pivotal role in the development of pancreatic fibrosis. A wide variety of external stimuli can cause PSC activation accompanied by metabolic changes, which alters the tissue microenvironment by producing extracellular matrix proteins, cytokines, growth factors, and other mediators. Several metabolites aggravate fibrosis and inflammation by acting as key activating factors for PSCs. In other words, PSCs sense systemic metabolic changes. The detrimental effects of PSC activation on normal pancreatic cells, especially islet cells, further complicate metabolic imbalance through the dysregulation of glucose metabolism. PSC activation promotes cancer by altering the metabolism in pancreatic cancer cells, which collaborate with PSCs to efficiently adapt to environmental changes, promoting their growth and survival. This collaboration also contributes to the acquisition of chemoresistance. PSCs sequester chemotherapeutic agents and produce competing molecules as additional resistance mechanisms. The application of these metabolic targets for novel therapeutic strategies is currently being explored. This mini-review summarizes the role of PSCs in metabolic regulation of normal and cancerous cells.
Collapse
|
8
|
Zhao Y, Yao H, Yang K, Han S, Chen S, Li Y, Chen S, Huang K, Lian G, Li J. Arsenic Trioxide-loaded nanoparticles Enhance the Chemosensitivity of Gemcitabine in Pancreatic Cancer via Reversal of Pancreatic Stellate Cells Desmoplasia through Targeting AP4/Galectin-1 Pathway. Biomater Sci 2022; 10:5989-6002. [DOI: 10.1039/d2bm01039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreatic stellate cell (PSCs) constitutes the fibrotic tumor microenvironment composed of the stroma matrix, which blocks the penetration of Gemcitabine (GEM) in pancreatic adenocarcinoma (PDAC) and results in chemoresistance. We...
Collapse
|