1
|
Agnusdei A, Maurelli AM, Gerin D, Monopoli D, Pollastro S, Catucci L, Faretra F, De Leo V. Fungicide-Loaded Liposomes for the Treatment of Fungal Diseases in Agriculture: An Assessment of Botrytis cinerea. Int J Mol Sci 2024; 25:8359. [PMID: 39125929 PMCID: PMC11313257 DOI: 10.3390/ijms25158359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, liposomes loaded with the fungicide, Fludioxonil (FLUD), for the containment of fungal diseases in agriculture were developed. Three types of vesicles with different compositions were compared: (I) plain vesicles, composed of soy phosphatidylcholine and cholesterol; (II) PEG-coated vesicles, with an additional polyethylene glycol coating; and (III) cationic vesicles, containing didodecyldimethylammonium bromide. Nanometric-sized vesicles were obtained both by the micelle-to-vesicle transition method and by the extrusion technique, and encapsulation efficiency, drug loading content, and Zeta potential were determined for all the samples. The extruded and PEGylated liposomes were the most stable over time and together with the cationic ones showed a significant prolonged FLUD release capacity. The liposomes' biological activity was evaluated on conidial germination, germ tube elongation and colony radial growth of the ascomycete Botrytis cinerea, a phytopathogenic fungus affecting worldwide many important agricultural crops in the field as well as in the postharvest phase. The extruded and PEGylated liposomes showed greater effectiveness in inhibiting germ tube elongation and colony radial growth of the fungal pathogen, even at 0.01 µg·mL-1, the lowest concentration assessed.
Collapse
Affiliation(s)
- Angelo Agnusdei
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.A.); (D.G.); (F.F.)
| | - Anna Maria Maurelli
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (A.M.M.); (D.M.); (V.D.L.)
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.A.); (D.G.); (F.F.)
| | - Donato Monopoli
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (A.M.M.); (D.M.); (V.D.L.)
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.A.); (D.G.); (F.F.)
| | - Lucia Catucci
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (A.M.M.); (D.M.); (V.D.L.)
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.A.); (D.G.); (F.F.)
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (A.M.M.); (D.M.); (V.D.L.)
| |
Collapse
|
2
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
3
|
Maurelli AM, De Leo V, Catucci L. Polydopamine-Modified Liposomes: Preparation and Recent Applications in the Biomedical Field. ACS OMEGA 2024; 9:24105-24120. [PMID: 38882106 PMCID: PMC11170693 DOI: 10.1021/acsomega.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Polydopamine (PDA) is a bioinspired polymer that has unique and desirable properties for emerging applications in the biomedical field, such as extraordinary adhesiveness, extreme ease of functionalization, great biocompatibility, large drug loading capacity, good mucopenetrability, strong photothermal capacity, and pH-responsive behavior. Liposomes are consolidated and attractive biomimetic nanocarriers widely used in the field of drug delivery for their biocompatibility and biodegradability, as well as for their ability to encapsulate hydrophobic, hydrophilic, and amphiphilic compounds, even simultaneously. In addition, liposomes can be decorated with appropriate functionalities for targeted delivery purposes. Thus, combining the interesting properties of PDA with those of liposomes allows us to obtain multifunctional nanocarriers with enhanced stability, biocompatibility, and functionality. In this review, a focus on the most recent developments of liposomes modified with PDA, either in the form of polymer layers trapping multiple vesicles or in the form of PDA-coated nanovesicles, is proposed. These innovative PDA coatings extend the application range of liposomes into the field of biomedical applications, thereby allowing for easier functionalization with targeting ligands, which endows them with active release capabilities and photothermal activity and generally improves their interaction with biological fluids. Therefore, hybrid liposome/PDA systems are proposed for surface-mediated drug delivery and for the development of nanocarriers intended for systemic and oral drug delivery, as well as for multifunctional nanocarriers for cancer therapy. The main synthetic strategies for the preparation of PDA-modified liposomes are also illustrated. Finally, future prospects for PDA-coated liposomes are discussed, including the suggestion of potential new applications, deeper evaluation of side effects, and better personalization of medical treatments.
Collapse
Affiliation(s)
- Anna Maria Maurelli
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- CNR-IPCF S.S. Bari, c/o Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- CNR-IPCF S.S. Bari, c/o Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
4
|
Maurelli AM, Ferreira B, Dias S, Almeida H, De Leo V, Sarmento B, Catucci L, das Neves J. Impact of polyethylene glycol and polydopamine coatings on the performance of camptothecin-loaded liposomes for localised treatment of colorectal cancer. MATERIALS ADVANCES 2024; 5:4276-4285. [DOI: 10.1039/d3ma01158e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Orally delivered therapeutics offer great promise for localized treatment of colorectal cancer. However, various natural barriers along the gastrointestinal tract need to be tackled to allow effective drug delivery to tumoral sites.
Collapse
Affiliation(s)
- Anna Maria Maurelli
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Bárbara Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Sofia Dias
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Helena Almeida
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Lucia Catucci
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - José das Neves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
5
|
He H, Huang M, Gao Z, Zhou Y, Zhao Y, Chen Y, Gu Y, Chen S, Yan B. Mussel-inspired polydopamine-modified silk nanofibers as an eco-friendly and highly efficient adsorbent for cationic dyes. NEW J CHEM 2023. [DOI: 10.1039/d2nj06055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Obtaining silk nanofibers by simple swelling and mechanical splitting of fibers.
Collapse
Affiliation(s)
- Heng He
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Minggang Huang
- Key Laboratory of Fine Chemical Application Technology of Luzhou, Luzhou 646099, China
| | - Zhiwei Gao
- Xinjiang Xinchun Petroleum Development Co., Ltd., Sinopec, Dongying 257000, China
| | - Yifan Zhou
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yuxiang Zhao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yan Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yingchun Gu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Hossain MN, De Leo V, Tamborra R, Laselva O, Ingrosso C, Daniello V, Catucci L, Losito I, Sollitto F, Loizzi D, Conese M, Di Gioia S. Characterization of anti-proliferative and anti-oxidant effects of nano-sized vesicles from Brassica oleracea L. (Broccoli). Sci Rep 2022; 12:14362. [PMID: 35999223 PMCID: PMC9399156 DOI: 10.1038/s41598-022-17899-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
In this in vitro study, we test our hypothesis that Broccoli-derived vesicles (BDVs), combining the anti-oxidant properties of their components and the advantages of their structure, can influence the metabolic activity of different cancer cell lines. BDVs were isolated from homogenized fresh broccoli (Brassica oleracea L.) using a sucrose gradient ultracentrifugation method and were characterized in terms of physical properties, such as particle size, morphology, and surface charge by transmission electron microscopy (TEM) and laser doppler electrophoresis (LDE). Glucosinolates content was assessed by RPLC–ESI–MS analysis. Three different human cancer cell lines (colorectal adenocarcinoma Caco-2, lung adenocarcinoma NCI-H441 and neuroblastoma SHSY5Y) were evaluated for metabolic activity by the MTT assay, uptake by fluorescence and confocal microscopy, and anti-oxidant activity by a fluorimetric assay detecting intracellular reactive oxygen species (ROS). Three bands were obtained with average size measured by TEM based size distribution analysis of 52 nm (Band 1), 70 nm (Band 2), and 82 nm (Band 3). Glucobrassicin, glucoraphanin and neoglucobrassicin were found mostly concentrated in Band 1. BDVs affected the metabolic activity of different cancer cell lines in a dose dependent manner compared with untreated cells. Overall, Band 2 and 3 were more toxic than Band 1 irrespective of the cell lines. BDVs were taken up by cells in a dose- and time-dependent manner. Pre-incubation of cells with BDVs resulted in a significant decrease in ROS production in Caco-2 and NCI-H441 stimulated with hydrogen peroxide and SHSY5Y treated with 6-hydroxydopamine, with all three Bands. Our findings open to the possibility to find a novel “green” approach for cancer treatment, focused on using vesicles from broccoli, although a more in-depth characterization of bioactive molecules is warranted.
Collapse
Affiliation(s)
- Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Rosanna Tamborra
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Chiara Ingrosso
- National Research Council of Italy-Institute for Physical and Chemical Processes (CNR-IPCF S.S. Bari), c/o Department of Chemistry, University of Bari "A. Moro", Bari, Italy
| | - Valeria Daniello
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari, Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari, Bari, Italy
| | - Francesco Sollitto
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Domenico Loizzi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
7
|
Liposomes containing nanoparticles: preparation and applications. Colloids Surf B Biointerfaces 2022; 218:112737. [DOI: 10.1016/j.colsurfb.2022.112737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022]
|
8
|
A Weed-Derived Hierarchical Porous Carbon with a Large Specific Surface Area for Efficient Dye and Antibiotic Removal. Int J Mol Sci 2022; 23:ijms23116146. [PMID: 35682825 PMCID: PMC9181242 DOI: 10.3390/ijms23116146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Adsorption is an economical and efficient method for wastewater treatment, and its advantages are closely related to adsorbents. Herein, the Abutilon theophrasti medicus calyx (AC) was used as the precursor for producing the porous carbon adsorbent (PCAC). PCAC was prepared through carbonization and chemical activation. The product activated by potassium hydroxide exhibited a larger specific surface area, more mesopores, and a higher adsorption capacity than the product activated by sodium hydroxide. PCAC was used for adsorbing rhodamine B (RhB) and chloramphenicol (CAP) from water. Three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich–Peterson models), and thermodynamic equations were used to investigate adsorption processes. The pseudo-second kinetic and Sips isotherm models fit the experimental data well. The adsorption mechanism and the reusability of PCAC were also investigated. PCAC exhibited a large specific surface area. The maximum adsorption capacities (1883.3 mg g−1 for RhB and 1375.3 mg g−1 for CAP) of PCAC are higher than most adsorbents. Additionally, in the fixed bed experiments, PCAC exhibited good performance for the removal of RhB. These results indicated that PCAC was an adsorbent with the advantages of low-cost, a large specific surface area, and high performance.
Collapse
|
9
|
Wastewater Treatment by Polymeric Microspheres: A Review. Polymers (Basel) 2022; 14:polym14091890. [PMID: 35567058 PMCID: PMC9105844 DOI: 10.3390/polym14091890] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
This review addresses polymer microspheres used as adsorbent for wastewater treatment. The removal of various pollutants (including dyes, heavy metal ions, and organic pollutants) is a prominent issue, as they can cause severe health problems. Porous microspheres can provide large specific area and active sites for adsorption or photo degradation. Enhancement in performance is achieved by various modifications, such as the introduction of nanoparticles, magnetic particles, and ZIF-8. Some microspheres were synthesized from synthetic polymers such as vinylic polymer and polydopamine (PDA) through a facile fabrication process. Natural polymers (such as cellulose, alginate, and chitosan) that are biodegradable and eco-friendly are also used. The adsorbents used in industrial application require high adsorption capacity, thermal stability, and recyclability. Batch adsorption experiments were conducted to investigate the optimal conditions, influence of related factors, and adsorption capacities. Insights regarding the adsorption mechanisms were given from the kinetic model, isotherm model, and various characterization methods. The recyclability is investigated through regeneration ratio, or their maintenance of their capability through repeated adsorption-desorption cycles. The high potential of polymer microsphere for the removal of pollutants from wastewater is shown through the high adsorption capacities, environmentally friendliness, and high stability.
Collapse
|