1
|
Liu S, Xu L, Shen Y, Wang L, Lai X, Hu H. Qingxin Kaiqiao Fang decreases Tau hyperphosphorylation in Alzheimer's disease via the PI3K/Akt/GSK3β pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117031. [PMID: 37579924 DOI: 10.1016/j.jep.2023.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) belongs to the category of "senile dementia" in traditional Chinese medicine. AD is associated with brain emptiness or collaterals blocked by phlegm-heat. "Fumanjian" from Jingyue Quanshu treats dementia by promoting qi circulation, alleviating depression, eliminating turbidity, cultivating positivity, and dispelling evil spirits. Qingxin Kaiqiao Fang (QKF), derived from Fumanjian, is effective in treating AD owing to previously mentioned clinical effects. Elucidating the mechanism(s) of action of QKF on AD associated with phlegm-heat may be beneficial for therapeutic management; however, further research is needed. AIM OF THE STUDY This study aimed to determine the role of the PI3K/Akt pathway in AD, especially the specific effector protein involved, and explore the efficacy of QKF in treating AD by modulating the PI3K/Akt signal. MATERIALS AND METHODS High-performance liquid chromatography-Q-orbitrap-mass spectrometry was used to analyze the chemical components of QKF. Subsequently, APP/PS1 double-transgenic mice were used for behavioral tests, and hematoxylin-eosin and Nissl staining were used to assess the neuroprotective and cognitive effects of QKF. Cerebrospinal fluid pharmacology was used in in vitro validation, and Aβ25-35 was used to induce PC12 cells to establish the AD cell model. Various methods, including immunohistochemistry, Western blotting, quantitative real-time polymerase chain reaction, morphological assay, cell counting kit-8(CCK-8) assay, and terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)staining, were used to evaluate the effect of QKF on Tau hyperphosphorylation and anti-apoptosis. These methods also assessed the influence of QKF on the PI3K/Akt/GSK3β pathway involving the mRNA and protein expressions. Finally, the inhibitor - LY294002 was used for reverse validation. RESULTS We identified 295 chemical components in the water extract of QKF.QKF improved spatial cognition and learning memory in APP/PS1 mice, protected PC12 cell morphology, improved cell survival, reduced Aβ25-35-induced apoptosis, and inhibited the hyperphosphorylation of Tau protein via the PI3k/Akt/GSK3β signaling pathway. Furthermore, this protective effect of QKF was reduced by LY294002 in vitro. CONCLUSIONS QKF can improve spatial cognition, learning, and memory abilities in APP/PS1 mice and protect PC12 cells. Decreasing the Tau hyperphosphorylation in AD exhibits curative efficacy on AD via the PI3K/Akt/GSK3β pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Shuo Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Luting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Yan Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Liuying Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Xiaoxiao Lai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Haiyan Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China.
| |
Collapse
|
2
|
Srivastava A, Johnson M, Renna HA, Sheehan KM, Ahmed S, Palaia T, Pinkhasov A, Gomolin IH, De Leon J, Reiss AB. Therapeutic Potential of P110 Peptide: New Insights into Treatment of Alzheimer's Disease. Life (Basel) 2023; 13:2156. [PMID: 38004296 PMCID: PMC10672680 DOI: 10.3390/life13112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-β accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-β generation and improving neuronal health by maintaining mitochondrial function in neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.S.); (M.J.); (H.A.R.); (K.M.S.); (S.A.); (T.P.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
3
|
Chen H, Li Y, Gao J, Cheng Q, Liu L, Cai R. Activation of Pgk1 Results in Reduced Protein Aggregation in Diverse Neurodegenerative Conditions. Mol Neurobiol 2023; 60:5090-5101. [PMID: 37249790 DOI: 10.1007/s12035-023-03389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
The prevention of protein condensates has emerged as a new drug target to treat diverse neurodegenerative disorders. We previously reported that terazosin (TZ), a prescribed antagonist of the α1 adrenergic receptor, is an activator of phosphoglycerate kinase 1 (Pgk1) and Hsp90. In this study, we aimed to determine whether TZ prevents the formation of diverse pathological condensates in cell cultures and animal disease models. In primary neuron culture, TZ treatment reduced both the protein density and abundance of fused in sarcoma (FUS)-P525L-GFP, a disease-associated mutant form of FUS. Regarding the mechanism, we found that increased intracellular ATP levels were critical for the reduction in protein aggregate density. In addition, Hsp90 activation by TZ enhanced Hsp90 interaction with ULK1, a master regulator of autophagy. Through in vivo studies, we examined neuron-specific overexpression of tau in Drosophila, mouse models of APP/PS1 Alzheimer's disease (AD), and a rat model of multiple system atrophy (MSA) via the viral expression of α-synuclein in the striatum. TZ prevented and reversed the formation of pathological protein condensates. Together, our results suggest that activation of Pgk1 in cytosol may dissolve pathological protein aggregates via increased ATP levels and degrade these proteins via autophagy; the FUS-P525L degradation pathway in nucleus is unclear.
Collapse
Affiliation(s)
- Hao Chen
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yajie Li
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Qi Cheng
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China.
| | - Rong Cai
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
4
|
Vieira SRL, Schapira AHV. Glucocerebrosidase mutations and Parkinson disease. J Neural Transm (Vienna) 2022; 129:1105-1117. [PMID: 35932311 PMCID: PMC9463283 DOI: 10.1007/s00702-022-02531-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The discovery of glucocerebrosidase (GBA1) mutations as the greatest numerical genetic risk factor for the development of Parkinson disease (PD) resulted in a paradigm shift within the research landscape. Efforts to elucidate the mechanisms behind GBA1-associated PD have highlighted shared pathways in idiopathic PD including the loss and gain-of-function hypotheses, endoplasmic reticulum stress, lipid metabolism, neuroinflammation, mitochondrial dysfunction and altered autophagy-lysosomal pathway responsible for degradation of aggregated and misfolded a-synuclein. GBA1-associated PD exhibits subtle differences in phenotype and disease progression compared to idiopathic counterparts notably an earlier age of onset, faster motor decline and greater frequency of non-motor symptoms (which also constitute a significant aspect of the prodromal phase of the disease). GBA1-targeted therapies have been developed and are being investigated in clinical trials. The most notable are Ambroxol, a small molecule chaperone, and Venglustat, a blood-brain-barrier-penetrant substrate reduction therapy agent. It is imperative that further studies clarify the aetiology of GBA1-associated PD, enabling the development of a greater abundance of targeted therapies in this new era of precision medicine.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK.
| |
Collapse
|
5
|
Dysfunction of Mitochondria in Alzheimer’s Disease: ANT and VDAC Interact with Toxic Proteins and Aid to Determine the Fate of Brain Cells. Int J Mol Sci 2022; 23:ijms23147722. [PMID: 35887070 PMCID: PMC9316216 DOI: 10.3390/ijms23147722] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD), certainly the most widespread proteinopathy, has as classical neuropathological hallmarks, two groups of protein aggregates: senile plaques and neurofibrillary tangles. However, the research interest is rapidly gaining ground in a better understanding of other pathological features, first, of all the mitochondrial dysfunctions. Several pieces of evidence support the hypothesis that abnormal mitochondrial function may trigger aberrant processing of amyloid progenitor protein or tau and thus neurodegeneration. Here, our aim is to emphasize the role played by two ‘bioenergetic’ proteins inserted in the mitochondrial membranes, inner and outer, respectively, that is, the adenine nucleotide translocator (ANT) and the voltage-dependent anion channel (VDAC), in the progression of AD. To perform this, we will magnify the ANT and VDAC defects, which are measurable hallmarks of mitochondrial dysfunction, and collect all the existing information on their interaction with toxic Alzheimer’s proteins. The pathological convergence of tau and amyloid β-peptide (Aβ) on mitochondria may finally explain why the therapeutic strategies used against the toxic forms of Aβ or tau have not given promising results separately. Furthermore, the crucial role of ANT-1 and VDAC impairment in the onset/progression of AD opens a window for new therapeutic strategies aimed at preserving/improving mitochondrial function, which is suspected to be the driving force leading to plaque and tangle deposition in AD.
Collapse
|
6
|
Hypoxic and Hypercapnic Responses in Transgenic Murine Model of Alzheimer’s Disease Overexpressing Human AβPP: The Effects of Pretreatment with Memantine and Rivastigmine. Int J Mol Sci 2022; 23:ijms23116004. [PMID: 35682682 PMCID: PMC9180806 DOI: 10.3390/ijms23116004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the severe respiratory problems reducing the quality of life for Alzheimer’s disease (AD) patients, their causes are poorly understood. We aimed to investigate hypoxic and hypercapnic respiratory responses in a transgenic mouse model of AD (AβPP V717I) overexpressing AβPP and mimicking early-onset AD. The cholinesterase inhibitor rivastigmine and the NMDA receptor antagonist memantine were used to investigate the effects of drugs, used to treat AD cognitive dysfunction, on breathing in hypoxia and hypercapnia. We found a significant increase in the respiratory response to hypercapnia and no difference in the hypoxic response in APP+ mice, compared with the control group (APP−). Memantine had no effect on respiration in either group, including responses to hypoxia and hypercapnia. Rivastigmine depressed resting ventilation and response to hypercapnia irrespective of the mice genotype. Reduction in hypoxia-augmented ventilation by rivastigmine was observed only in APP+ mice, which exhibited lower acetylcholinesterase activity in the hippocampus. Treatment with rivastigmine reduced the enzyme activity in both groups equally in the hippocampus and brainstem. The increased ventilatory response to hypercapnia in transgenic mice may indicate alterations in chemoreceptive respiratory nuclei, resulting in increased CO2 sensitivity. Rivastigmine is a potent reductant of normoxic and hypercapnic respiration in APP+ and APP− mice.
Collapse
|
7
|
Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J. The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. Exp Gerontol 2022; 164:111828. [DOI: 10.1016/j.exger.2022.111828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
8
|
Clement A, Madsen MJ, Kastaniegaard K, Wiborg O, Asuni AA, Stensballe A. Chronic Stress Induces Hippocampal Mitochondrial Damage in APPPS1 Model Mice and Wildtype Littermates. J Alzheimers Dis 2022; 87:259-272. [PMID: 35275551 DOI: 10.3233/jad-220064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. Despite decades of investigation, the etiology of AD is not fully understood, although emerging evidence suggest that chronic environmental and psychological stress plays a role in the mechanisms and contributes to the risk of developing AD. Thus, dissecting the impact of stress on the brain could improve our understanding of the pathological mechanisms. OBJECTIVE We aimed to study the effect of chronic stress on the hippocampal proteome in male APPPS1 transgenic mice and wildtype (WT) littermates. METHODS APPPS1 and WT mice were subjected to 4 weeks of chronic stress followed by 3 weeks of continued diurnal disruption. Hippocampal tissue was used for proteomics analysis using label-free quantitative DIA based LC-MS/MS analysis. RESULTS We identified significantly up- and downregulated proteins in both APPPS1 and WT mice exposed to chronic stress compared to the control groups. Via interaction network mapping, significant proteins could be annotated to specific pathways of mitochondrial function (oxidative phosphorylation and TCA cycle), metabolic pathways, AD pathway and synaptic functions (long term potentiation). In WT mice, chronic stress showed the highest impact on complex I of the oxidative phosphorylation pathway, while in APPPS1 mice this pathway was compromised broadly by chronic stress. CONCLUSION Our data shows that chronic stress and amyloidosis additively contribute to mitochondrial damage in hippocampus. Although these results do not explain all effects of chronic stress in AD, they add to the scientific knowledge on the topic.
Collapse
Affiliation(s)
- Amalie Clement
- Department of Health Science and Technology, Aalborg University, Denmark.,Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| | | | | | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Ayodeji A Asuni
- Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|