1
|
Stanley SM, Khera HK, Chandrasingh S, George CE, Mishra RK. A comprehensive review of dengue with a focus on emerging solutions for precision and timely detection. Int J Biol Macromol 2024; 254:127613. [PMID: 37875186 DOI: 10.1016/j.ijbiomac.2023.127613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
Dengue is a global health problem, caused by the dengue virus (DENV), which belongs to the Flaviviridae family of viruses. The transmission of DENV occurs through vectors, Ae. aegypti and Ae. Albopictus mosquitoes, to the human host, classifying it as a vector-borne disease. The disease incidence is increasing at an alarming rate and needs to be tackled to reduce the morbidity and mortality caused by the disease. Environmental and clinical surveillance, detection of the virus, and diagnostics are critical tools to address this issue. In this comprehensive review, we explore various diagnostic techniques and the associated challenges within the context of dengue. While we briefly touch upon dengue's epidemiology, serotypes, and pathogenesis, our primary emphasis remains on diagnostics. We delve into the intricacies of these diagnostic methods, considering both the challenges they entail and the potential they hold in terms of accuracy and accessibility. It's important to note that the review does not extensively cover clinical aspects or regional variations of the disease.
Collapse
Affiliation(s)
- Swetha Mariam Stanley
- Tata Institute for Genetics and Society, Bangalore Life Science Cluster (BLiSC), inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bengaluru, India
| | - Harvinder Kour Khera
- Tata Institute for Genetics and Society, Bangalore Life Science Cluster (BLiSC), inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bengaluru, India.
| | | | | | - Rakesh K Mishra
- Tata Institute for Genetics and Society, Bangalore Life Science Cluster (BLiSC), inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bengaluru, India
| |
Collapse
|
2
|
LeFevre I, Bravo L, Folschweiller N, Medina EL, Moreira ED, Nordio F, Sharma M, Tharenos LM, Tricou V, Watanaveeradej V, Winkle PJ, Biswal S. Bridging the immunogenicity of a tetravalent dengue vaccine (TAK-003) from children and adolescents to adults. NPJ Vaccines 2023; 8:75. [PMID: 37230978 DOI: 10.1038/s41541-023-00670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Immunobridging is an important methodology that can be used to extrapolate vaccine efficacy estimates to populations not evaluated in clinical studies, and that has been successfully used in developing many vaccines. Dengue, caused by a mosquito-transmitted flavivirus endemic to many tropical and subtropical regions, is traditionally thought of as a pediatric disease but is now a global threat to both children and adults. We bridged immunogenicity data from a phase 3 efficacy study of a tetravalent dengue vaccine (TAK-003), performed in children and adolescents living in endemic areas, with an immunogenicity study in adults in non-endemic areas. Neutralizing antibody responses were comparable in both studies following receipt of a two-dose TAK-003 schedule (months 0 and 3). Similar immune responses were observed across exploratory assessments of additional humoral responses. These data support the potential for clinical efficacy of TAK-003 in adults.
Collapse
Affiliation(s)
- Inge LeFevre
- Vaccines Business Unit, Takeda Pharmaceuticals International AG, Zürich, Switzerland
| | - Lulu Bravo
- College of Medicine, University of the Philippines, Manila, Philippines
| | - Nicolas Folschweiller
- Vaccines Business Unit, Takeda Pharmaceuticals International AG, Zürich, Switzerland
| | - Eduardo Lopez Medina
- Centro de Estudios en Infectología Pediatrica CEIP; Department of Pediatrics, Universidad Del Valle; Clínica Imbanaco, Grupo Quironsalud, Cali, Colombia
| | - Edson Duarte Moreira
- Associação Obras Sociais Irmã Dulce Hospital Santo Antônio and Oswaldo Cruz Foundation, Bahia, Brazil
| | | | | | - Leslie M Tharenos
- The Division of Environmental and Occupational Health Sciences, University of Illinois at Chicago School of Public Health, Chicago, IL, USA
| | - Vianney Tricou
- Vaccines Business Unit, Takeda Pharmaceuticals International AG, Zürich, Switzerland
| | - Veerachai Watanaveeradej
- Department of Pediatrics, Phramongkutklao Hospital and Faculty of Medicine, Kasetsart University, Bangkok, Thailand
| | | | | |
Collapse
|
3
|
Tsuji I, Vang F, Dominguez D, Karwal L, Sanjali A, Livengood JA, Davidson E, Fouch ME, Doranz BJ, Das SC, Dean HJ. Somatic Hypermutation and Framework Mutations of Variable Region Contribute to Anti-Zika Virus-Specific Monoclonal Antibody Binding and Function. J Virol 2022; 96:e0007122. [PMID: 35575481 PMCID: PMC9175631 DOI: 10.1128/jvi.00071-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.
Collapse
Affiliation(s)
- Isamu Tsuji
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Fue Vang
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - David Dominguez
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Ankita Sanjali
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Jill A. Livengood
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | | | | | | | - Subash C. Das
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Hansi J. Dean
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| |
Collapse
|