1
|
Campo Verde Arbocco F, Pascual LI, García D, Ortiz I, Gamarra-Luques C, Carón RW, Hapon MB. Epigenetic impact of hypothyroidism on the functional differentiation of the mammary gland in rats. Mol Cell Endocrinol 2024; 590:112267. [PMID: 38729597 DOI: 10.1016/j.mce.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Mammary gland (MG) lactogenic differentiation involves epigenetic mechanisms. We have previously shown that hypothyroidism (HypoT) alters the MG transcriptome in lactation. However, the role of thyroid hormones (T3 and T4 a. k.a. THs) in epigenetic differentiation of MG is still unknown. We used a model of post-lactating HypoT rats to study in MG: a) Methylation and expression level of Gata3, Elf5, Stat6, Stat5a, Stat5b; b) Expression of Lalba, IL-4Rα and Ncoa1 mRNA; c) Histone H3 acetylation and d) Estrogen and progesterone concentration in serum. HypoT increases the estrogen serum level, decreases the progesterone level, promotes methylation of Stat5a, Stat5b and Stat6, decreasing their mRNA level and of its target genes (Lalba and IL-4Rα) and increases the Ncoa1 mRNA expression and histone H3 acetylation level. Our results proved that HypoT alters the post-lactation MG epigenome and could compromise mammary functional differentiation.
Collapse
Affiliation(s)
- Fiorella Campo Verde Arbocco
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad de Mendoza, Facultad de Ciencias Médicas, Argentina.
| | - Lourdes Inés Pascual
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Daiana García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Irina Ortiz
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Rubén Walter Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
2
|
Lang L, Zheng J, Liang S, Zhang F, Fu Y, Deng K, Li F, Yang X, Wang J, Luo Y, Zhang S, Zhu X, Wang L, Gao P, Zhu C, Shu G, Xi Q, Zhang Y, Jiang Q, Wang S. Browning of Mammary Fat Suppresses Pubertal Mammary Gland Development of Mice via Elevation of Serum Phosphatidylcholine and Inhibition of PI3K/Akt Pathway. Int J Mol Sci 2023; 24:16171. [PMID: 38003364 PMCID: PMC10671055 DOI: 10.3390/ijms242216171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Mammary fat plays a profound role in the postnatal development of mammary glands. However, the specific types (white, brown, or beige) of adipocytes in mammary fat and their potential regulatory effects on modulating mammary gland development remain poorly understood. This study aimed to investigate the role of the browning of mammary fat on pubertal mammary gland development and explore the underlying mechanisms. Thus, the mammary gland development and the serum lipid profile were evaluated in mice treated with CL316243, a β3-adrenoceptor agonist, to induce mammary fat browning. In addition, the proliferation of HC11 cells co-cultured with brown adipocytes or treated with the altered serum lipid metabolite was determined. Our results showed that the browning of mammary fat by injection of CL316243 suppressed the pubertal development of mice mammary glands, accompanied by the significant elevation of serum dioleoylphosphocholine (DOPC). In addition, the proliferation of HC11 was repressed when co-cultured with brown adipocytes or treated with DOPC. Furthermore, DOPC suppressed the activation of the PI3K/Akt pathway, while the DOPC-inhibited HC11 proliferation was reversed by SC79, an Akt activator, suggesting the involvement of the PI3K/Akt pathway in the DOPC-inhibited proliferation of HC11. Together, the browning of mammary fat suppressed the development of the pubertal mammary gland, which was associated with the elevated serum DOPC and the inhibition of the PI3K/Akt pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.L.); (J.Z.); (S.L.); (F.Z.); (Y.F.); (K.D.); (F.L.); (X.Y.); (J.W.); (Y.L.); (S.Z.); (X.Z.); (L.W.); (P.G.); (C.Z.); (G.S.); (Q.X.); (Y.Z.); (Q.J.)
| |
Collapse
|
3
|
Zareinejad M, Mehdipour F, Roshan-Zamir M, Faghih Z, Ghaderi A. Dual Functions of T Lymphocytes in Breast Carcinoma: From Immune Protection to Orchestrating Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4771. [PMID: 37835465 PMCID: PMC10571747 DOI: 10.3390/cancers15194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type in women and the second leading cause of death. Despite recent advances, the mortality rate of BC is still high, highlighting a need to develop new treatment strategies including the modulation of the immune system and immunotherapies. In this regard, understanding the complex function of the involved immune cells and their crosstalk with tumor cells is of great importance. T-cells are recognized as the most important cells in the tumor microenvironment and are divided into several subtypes including helper, cytotoxic, and regulatory T-cells according to their transcription factors, markers, and functions. This article attempts to provide a comprehensive review of the role of T-cell subsets in the prognosis and treatment of patients with BC, and crosstalk between tumor cells and T-cells. The literature overwhelmingly contains controversial findings mainly due to the plasticity of T-cell subsets within the inflammatory conditions and the use of different panels for their phenotyping. However, investigating the role of T-cells in BC immunity depends on a variety of factors including tumor types or subtypes, the stage of the disease, the localization of the cells in the tumor tissue and the presence of different cells or cytokines.
Collapse
Affiliation(s)
| | | | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| |
Collapse
|
4
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
5
|
Jung MA, Song HK, Jo K, Lee A, Hwang YH, Ji KY, Jung DH, Cai M, Lee JY, Pyun BJ, Kim T. Gleditsia sinensis Lam. aqueous extract attenuates nasal inflammation in allergic rhinitis by inhibiting MUC5AC production through suppression of the STAT3/STAT6 pathway. Biomed Pharmacother 2023; 161:114482. [PMID: 36921533 DOI: 10.1016/j.biopha.2023.114482] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Allergic rhinitis (AR), a chronic respiratory inflammatory disease, is among the most common chronic diseases reported worldwide. Mucus hypersecretion is a critical feature of AR pathogenesis. Although the Gleditsia sinensis extract has several beneficial effects on human health, its effects on allergic inflammation have not yet been investigated. In this study, we examined the effects of G. sinensis aqueous extract (GSAE) on nasal inflammation in an ovalbumin (OVA)-induced AR mouse model. GSAE was administered orally for 1 week and then the clinical nasal symptoms were evaluated. The levels of histamine, OVA-specific immunoglobulin (Ig) E, and interleukin (IL)-13 were measured in the serum using an enzyme-linked immunosorbent assay (ELISA). Inflammatory cells were then counted in the nasal lavage fluid (NALF) and histopathology in the nasal epithelium was evaluated. STAT3/STAT6 phosphorylation was examined in primary human nasal epithelial cells (HNEpCs) using western blot analysis. Oral administration of GSAE to OVA-induced AR mice alleviated nasal clinical symptoms and reduced OVA-specific immunoglobulin E, interleukin (IL)-13, and histamine levels. The accumulation of eosinophils in nasal lavage fluid, nasal mucosa, mast cells, goblet cells, and mucin 5AC (MUC5AC) in the nasal epithelium was also inhibited by GSAE. Treatment with GSAE inhibited the production of MUC5AC in IL-4/IL-13-stimulated primary human nasal epithelial cells through the signal transducer and activator of transcription (STAT)3/STAT6 signaling pathway. These results indicated that GSAE reduces nasal inflammation suggesting that it is a potential treatment option for AR.
Collapse
Affiliation(s)
- Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Ami Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea; Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), 30 Baekhak1-gil, Jeongeup-si 56212, the Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Mudan Cai
- KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea.
| |
Collapse
|
6
|
Gorgisen G, Aydin M, Mboma O, Gökyildirim MY, Chao CM. The Role of Insulin Receptor Substrate Proteins in Bronchopulmonary Dysplasia and Asthma: New Potential Perspectives. Int J Mol Sci 2022; 23:ijms231710113. [PMID: 36077511 PMCID: PMC9456457 DOI: 10.3390/ijms231710113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023] Open
Abstract
Insulin receptor substrates (IRSs) are proteins that are involved in signaling through the insulin receptor (IR) and insulin-like growth factor (IGFR). They can also interact with other receptors including growth factor receptors. Thus, they represent a critical node for the transduction and regulation of multiple signaling pathways in response to extracellular stimuli. In addition, IRSs play a central role in processes such as inflammation, growth, metabolism, and proliferation. Previous studies have highlighted the role of IRS proteins in lung diseases, in particular asthma. Further, the members of the IRS family are the common proteins of the insulin growth factor signaling cascade involved in lung development and disrupted in bronchopulmonary dysplasia (BPD). However, there is no study focusing on the relationship between IRS proteins and BPD yet. Unfortunately, there is still a significant gap in knowledge in this field. Thus, in this review, we aimed to summarize the current knowledge with the major goal of exploring the possible roles of IRS in BPD and asthma to foster new perspectives for further investigations.
Collapse
Affiliation(s)
- Gokhan Gorgisen
- Department of Medical Genetics, Faculty of Medicine, Van Yüzüncü Yil University, Van 65080, Turkey
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Olivier Mboma
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Mira Y. Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35390 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9946735
| |
Collapse
|
7
|
Liangxue Xiaoban decoction and its disassembled prescriptions ameliorate psoriasis-like skin lesions induced by imiquimod in mice via T cell regulation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Massey O, Suphioglu C. Recent Advances in the Inhibition of the IL-4 Cytokine Pathway for the Treatment of Allergen-Induced Asthma. Int J Mol Sci 2021; 22:ijms222413655. [PMID: 34948449 PMCID: PMC8706302 DOI: 10.3390/ijms222413655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
The IL-4 and IL-13 cytokine pathways play integral roles in stimulating IgE inflammation, with the IL-4 cytokine being a major cytokine in the etiology of thunderstorm asthma, atopic dermatitis, and allergic rhinitis. The increasing prevalence of thunderstorm asthma in the younger population and the lessening efficacy of corticosteroids and other anti-inflammatories has created a need for more effective pharmaceuticals. This review summarizes the IL-4 and IL-13 pathways while highlighting and discussing the current pathway inhibitors aimed at treating thunderstorm asthma and atopic dermatitis, as well as the potential efficacy of peptide therapeutics in this field.
Collapse
Affiliation(s)
- Oliver Massey
- NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|